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Preface

This report describes efforts completed in the Language Stud-

ies project at Syracuse University under RADC contract F30602-77-
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The report is produced in five volumes to facilitate single

volume distribution.
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ABSTRACT

In this research a multiple finite source queueing model

with a single server and fixed priority service discipline is

investigated. Interarrival times have exponential density func-

tions and service times have arbitrary distribution functions.

A solution procedure, containi-' a set of numerical algorithms,

is developed to obtain server utilization and the mean values

of the waiting times per customer of diffeient classes and the

number of waiting customers of different classes.

The imbedded Markov chain technique is used as the basic

method of analysis of the model. First, the expressions for

the utilization, p, and the mean values of the system performance

measures for different classes are obtained in terms of p.'s, the

proportion of time the server is busy with the customers of the

corresponding classes, using an extension of Little's formula.

Based on regenerative theory, these pi's are related to E(Bi)'s,

(i = 1,2,...,K), which are the expected lengths of the busy

period during which the server is busy with class i customers

and E(I), the expected length of the idle period. The E(Bi)'s
1

are then expressed as functions of the steady state probabilities

of the Markov chain obtained by imbedding the process at depar-

ture epochs.

After the elements of the transition probability matrix of

the Markov Chain, P, are generated, obtaining the steady state
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probabilities involves inversion of a large matrix. Numerical

techniques are developed for inversion, first by reordering the

states of P to have a suitable structure for the matrix to be

inverted, and then modifying an available inversion procedure

to suit this structure. Using the expressions developed for the

inverse, recursive relations are derived for finding the values

of steady state departure probabilities.

The set of algorithms developed are extended to find time

average marginal and joint probabilities of finding a certain

number of waiting customers of different classes at the facility

using Level Crossing Analysis. The possibility of using the

algorithms for mixed class models consisting of finite sources

for some classes and infinite sources for the other classes is

also discussed.
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CHAPTER 1

INTRODUCTION AND REVIEW OF THE LITERATURE

1.1 INTRODUCTION

Queueing theory serves as a useful mathematical tool to

analyze the effects of various queueing phenomena to be con-

sidered in the modeling and analysis of many systems. A mathe-

matical study of any system using queueing models needs speci-

fication about the capacity of the source from which customers

are generated, the distributions of the inter-arrival and ser-

vice times of the customers, the number and arrangement of

servers and service stations at the service facility, and the

service discipline based on which the customers are selected

for service. When a mathematical model of a system is construc-

ted, the underlying motivation is usually to evaluate some

measure of performance. In the case of queueing systems,

usually the performance measures which are of interest are

the waiting times, the number of customers in the queue and

at the service facility, and the utilization of the server.

The mean, variance, and the probability distribution of these

variables are studied.

Queueing models in which customers are generated from at

least one finite input source to which they return after re-

ceiving service are known as finite-source queueing models.

1i
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Such finite source models were initially used to study indus-

trial processes in which one operator or a group of operators

attend a finite number of machines which may break down from

time to time. Therefore, in queueing theory literature, these

models are known as the machine servicing model [FELL 66] or

the machine interference model [COXS 61]. Each machine is

either running, requiring repair service, or waiting as a

standby. When a machine breaks down, it Joins the queue of

machines waiting for repair. If the operator is free, a

machine is selected from the queue based on some scheduling

rule. If the operator is busy, the machine must wait in the

queue until it is selected for service. After a machine is

serviced, it starts working and after a passage of some time

interval, which may be stochastic, fails again and requires

the service of the operator.

Such finite source models are also models of many time-

sharing computer and multi-access communications systems in

which a finite number of users or computer terminals depend

on the service from a computer system. Each user sends from

the terminal a request for processing to the computer and the

system keeps this request in the queue. When the particular

request is selected for processing according to the scheduling

rule used for the processor, the program associated with it

is executed. After the execution is completed, the response

or the output is fed back to the terminal and then the user

2



begins to generate a new request for the computer.

If, in such models, more than one type of customer ema-

nates from one or more input sources, then the question of

allocating priorities arises and is of practical significance.

Two types of models may arise in such cases with priorities

[JAIS 67]. They are (i) the multiple finite source priority

models, in which K types (K > 2) of customers are generated

from K different independent sources, and (ii) the single

finite source priority models in which K types (K > 2) of cus-

tomers are generated from a single finite source. An example

of the multiple finite source priority model is the multiaccess

computer system which is used by different independent classes

or groups of finite number of users. The priority given to

a user when being selected for service can depend on the class

to which the user belongs. Single finite source models are

best illustrated by the situation in which an operator looks

after a set of N number of machines, each of which can fail

because of any of K types of failures, with certain probabili-

ties. Based on the type of failure, some priority rule is

used to select a broken down machine for repair. The priority

rule used in a queueing model can be of different types. One

of the most commonly used priority disciplines assigns dif-

ferent fixed priorities to different groups or types of cus-

tomers based on some external characteristics and always gives

preference to higher priority customers over those with lower

3



priority. This implies that a lower priority customer is taken

for service only if there are no higher priority customers

present. If the service of a lower priority customer, already

being serviced, is interrupted before completion of service on

the arrival of a higher priority customer, then this priority

discipline is called preemptive fixed priority discipline. If

the service of a customer is never interrupted before completion,

then this type of service discipline is known as non-preemptive

fixed priority discipline. In both types, the customers within

the same class are selected for service based on the order of

their arrival.

Finite source queueing models are difficult to analyze, as

compared to infinite source models, because the arrival rate

of the customers at the service facility is not constant, but

is dependent on the number of customers already at the service

facility. Only limited work has been done in finite source

models as compared to infinite source models. The complexity

of the analysis increases as the number of classes increases.

Systems with large source capacities can be analyzed approxi-

mately as infinite source models if the arrival rates of the

customers at the facility are less dependent on the number of

customers already at the facility. But such an approximation may

not be valid in systems in which the source capacities are

sufficiently small and the arrival rates of the customers are

dependent on the number of customers already at the facility.

4



Multiple finite source priority models are comparatively

easier to analyze than single finite source priority models.

This is because in the case of single finite source priority

models the arrival of any class customer at the facility

affects the arrival rates of all other classes, which is not

the case with multiple finite source priority models. As far

as the priority disciplines are concerned, analysis of preemp-

tive priority models is easier compared with that of non-pre-

emptive priority models, because the lower priority customers

do not have any effect on the higher priority customers in

preemptive discipline.

1.2 OBJECTIVE OF THIS RESEARCH

In this research, the multiple finite source priority

model with a single server and non-preemptive fixed priority

service discipline is considered. The objective is to develop

numerical algorithms to obtain mean waiting times of each class

customer, the mean numbers of each class customers waiting in

the queue and at the service facility, and the utilization of

the server.

The schematic diagram of the model considered in this re-

search is given in Figure 1.1. There are K(> 2) classes of

customers, originating from K independent finite sources. The

capacity of source i, (i = 1,2,...,K), is Ni which is finite.

5
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Each customer of class i calls for service at the service facil-

ity after spending a random amount of time at the source. This

time is exponentially distributed with mean 1/A i  There is a

single server at the service facility. The service times Si of

class i customers are identically and independently distributed

random variables, with an arbitrary distribution function F(si)

and with a mean i/pi, where pi is the mean service rate of class

i customers. Non-preemptive fixed priority service discipline

is used by the server with higher priority given to class i

customers compared with class j customers if i < j. Within the

same class, customers are selected for service based on the

order of their arrival. Extending Kendall's notation and the

report of the Queueing Standardization Conference [MOOR 72],

this model can be written as a M/G/l/ /N,,N2,... ,NK/PR with non-

preemptive discipline.

There are several methods available to analyze queueing

models, among which some are specially suitable for the model

in this research. These are described in the next section.

1.3 METHODS FOR ANALYSIS OF THE MODEL

A queueing process is basically a stochastic process and the

method of analyzing any queueing model depends on the type of the

inherent stochastic process of the model. An interesting class

of stochastic processes is the Markov process in which the pre-

sent state of the system is sufficient to predict the future

7



without a knowledge of the past history of the system. In case

of any queueing model with exponential inter-arrival and service

times, the number of customers present at the service facility

at any arbitrary time forms a Markov process. In such models,

taking the state of the system as given by the number of custom-

ers present at the service facility, the equilibrium or the

steady state time average probability distribution of the num-

ber of customers present at the facility can be obtained. This

is done by writing the balance equations, which are known as

global balance equations, for each state based on the principle

that the probabilistic flow rate into a state must equal the prob-

abilistic flow rate out of that state under steady state condi-

tions. These global balance equations form a set of simultane-

ous equations which are then solved to find the steady state

time average probabilities. In some cases, it is possible to

derive recursive relations between the probabilities of succes-

sive states which may lead to a general equation for the prob-

abilities. This saves time required for solving the simultane-

ous equations.

When either the service times or the inter-arrival times

of the customers in a model are not exponential, the number of

customers present at the service facility at any arbitrary time

is no longer a Markov process. There are three commonly used

approaches to handle such cases which are suitable for the

model considered in this research [KLEI 75]. These are dis-

8



cussed in the following subsections with respect to the expo-

nential arrival time and arbitrary service time distributions.

1.3.1 The Generalized Method of Stages

One approach to solve nonexponential service time distribu-

tions is the method of stages and its generalization. Cox

[COX 551 showed that any probability density function having a

rational Laplace transform can be represented as a combination

of fictitious exponential stages with appropriate mean for each

stage. The advantage in such a representation of an arbitrary

service time distribution is that by including the stage in

which the customer is in service, in the description of the state

along with the number of customers at the facility, the global

balance equations can be written.

The main problem is, however, that the dimension of the

state space rises rather sharply as the system complexity and

the number of stages in the representation of the service time

distribution grow. This correspondingly increases the number

of simultaneous equations to be solved, though it is easy to ob-

tain the matrix corresponding to these equations. Also, this

approach is obviously restricted to service time distributions

with rational Laplace transforms.

9
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1.3.2 Imbedded Markov Chain Analysis

Any non-Markovian process can be studied by extracting a

set of points at which the Markovian property holds. Such points

are called regeneration points. In queueing models with exponen-

tial inter-arrival times and general service times, the epochs

at which customers depart from the service facility constitute

a set of regeneration points. Therefore the number of customers

present at the service facility at these points forms a Markov

process. This method is called the imbedded Markov chain analy-

sis because it involves extracting a discrete-time Markov chain

imbedded in the continuous-time process and this technique is due

to Kendall [KEND 50).

Using the theory of Markov Chains, the steady state prob-

abilities of finding different numbers of customers at the facil-

ity at departure epochs can be found through the one-step transi-

tionprobabilities of this Markov chain. It involves calculation

of the transition probabilities and solving of a set of simultane-

ous equations, the total number of which depends upon the total

number of the states of the Markov chain. The time average prob-

abilities of finding different numbers of customers at the service

facility are then related to the steady state departure probabili-

ties in those models in which they are not equal.

Calculation of transition probabilities which are the elements

of the matrix corresponding to the set of simultaneous equations,

10



may be difficult in complex models. But the number of equations

to be solved is much smaller than the case of the global balance

equations in the generalized method of stages because of the

smaller state space of the Markov chain.

1.3.3 Supplementary Variable Technique

A method of making a non-Markovian process Markovian is to

incorporate the missing information by adding a continuous vari-

able as a supplementary variable in the state description. In

case of models with exponential inter-arrival times and arbitrary

service times, the state of the system is defined by the pair

consisting of the number of customers at the facility and the

elapsed service time of the customer already under service. This

approach was first suggested by Kendall [KEND 53], but was first

used by Cox [COX 55a]. The remaining service time can also be

used as the supplementary variable, insteady of the elapsed ser-

vice time [HEND 721. As compared to this method, a discrete vari-

able, namely the stage of the service time distribution of the

customer already under service, is added as a supplementary vari-

able in the method of generalized stages described in 1.3.1.

After the supplementary variables are included in the state

description, balance equations can be written and solved. The

solution of the equations involves transforms, which can become

very difficult for complex models.

11 ,
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1.4 REVIEW OF RELATED WORK

Analysis of single class finite source models with exponen-

tial inter-arrival and service times using global balance equa-

tions can be found in books on queueing theory [GROS 74 and

KLEI 75]. The single class finite source model with exponential

service times and arbitrary service time distributions was studied

by Jaiswal IJAIS 68] using the supplementary variable technique.

In this model the proportion of departures that leave a certain

number of customers at the service facility is not equal to the

proportion of time the same number of customers are at the facil-

ity. Courtois and Georges [COUR 711 obtained relations between

these departure average and time average probabilities for a

M/G/I queueing model with state-dependent arrival and service pro-

cesses and a single class of customers. The single class finite

source model is a special case of the model analyzed by them.

Thiruvengadam [THIR 65] analyzed a M/G/l/ /N,,N 2/PR model

with non-preemptive priority rule, using the supplementary vari-

able technique and solved the resulting differential difference

equations. Jaiswal and Thiruvengadam [JAIS 67] considered this

method tedious and modified the analysis, basing it upon the

basic server sojourn process, which starts when a lower priority

customer enters service and ends when the server becomes free

to accept the next lower priority customer for service. Using

this approach, they studied a M/G/l/ /N1,N2/PR model with pre-

12



emptive priority rule. For the non-preemptive service rule, they

suggested modifications in this approach. Extending this work,

Jaiswal [JAIS 68] did extensive work in different types of pri-

ority queueing models. For a M/G/l/ /N1 ,N2 /PR model with non-

preemptive priority rule, he derived the expected length of the

busy period duration, in terms of lengthy functions of Laplace

Transforms of service time distributions of the classes, using

the supplementary variable technique. He also obtained Laplace

Transforms of the joint queue length probabilities and the occu-

pation time density. These are difficult to solve even for two

classes. Generalization to more than two classes presents

immense algebraic difficulties. Therefore, Jaiswal did not ex-

tend his approach to more than two classes. We-Min Chow [CHOW 75]

investigated the behavior of the same model using imbedded Markov

chain analysis. He derived a relation between time average prob-

abilities and departure average probabilities in terms of the

integrals of functions of inter-arrival and service time distri-

butions of the customers and the one step transition probabilities.

These are difficult to evaluate even for two classes.

Benson and Cox [BENS 51] studied a single finite source

priority model in which a group of machines failed because of two

types of failures. Assuming exponential running and service times,

they used balance equations and obtained the machine availability

and the operator efficiency. Jaiswal and Thiruvengadam [JAIS 63]

analyzed a similar model with arbitrary service time distribution

13



using the supplementary variable technique. They obtained the

steady state probabilities of the number of machines waiting for

repair, the operator efficiency and the machine availability.

None of the above works, which studied either the multiple

or the single finite source priority models with exponential

inter-arrival times and arbitrary service times, could obtain

computationally feasible solutions for finding the system per-

formance measures. Most of these studies described the approach-

es which could be used to analyze such models.

Any finite source queueing model can be represented by an

equivalent closed network with two nodes. Queueing networks

play an important role as performance models of computers and

communications systems. Therefore, considerable research has

been done in recent years on queueing networks. This has re-

4 sulted in a significant number of useful results. An important

result among these is the discovery of Jackson [JACK 63], Gordon

and Newell [GORD 67), and Basket, et al. [BASK 75] that for cer-

tain classes of networks the solutions of the balance equations

are in the form of a product of simple terms. These are known

as product form solutions. The advantage of such form of

solutions is that the problem of obtaining the probabilities

reduces to that of normalizing the product terms to form a pro-

per probability distribution and of the computation of the

normalizing constant. The process of these solutions was helped

14



by the algorithms published by Buzen [BUZE 73] and Reiser and

Kobayashi [REIS 75a, REIS 75b, and REIS 77]. In some cases it

may be necessary to find only the mean values of the queue sizes,

waiting times, and utilizations and not the probability distribu-

tions. If in such cases the models have product form solution,

then a solution method called mean value analysis, developed by

Reiser and Lavenberg [REIS 80],can be used. This method is based

on the relation between the mean waiting time and the mean queue

size of a model with one less customer. Without the necessity

of computing the normalization constants, this technique solves

the required set of equations numerically. This analysis is

considered to be simpler and numerically less troublesome.

There are many models, including the multiple class closed

network model with arbitrary service times and fixed priority

disciplines, which do not have product form solution. One of

the ways to analyze such models is the standard method of writing

the global balance equations and solving them, if service times

have rational Laplace transforms. For large models, approximate

numerical solution is a feasible alternative. Sauer and Chandy

[SAUE 801 give an account of the approximate techniques developed

to analyze queueing networks.

The approximate techniques are basically of three types.

The first one is aggregation which replaces subnetworks by com-

posite queues which will produce approximately the same flow of

15



customers through the queue as the subnetwork for all classes

of customers. This is done until the resulting network has a

feasible solution. This was applied to analyze a multiple class

closed queueing network model with fixed priority discipline by

Sauer and Chandy [SAUE 75]. The second type is diffusion ap-

proximation. In the diffusion approximation the variances of

the inter-arrival times and the service times can be incorporated

and the discrete process is represented by a continuous-time

continuous-state Markov process. Since diffusion processes in

complex models are difficult to solve algebraically, heuristics

are used to simplify the solution, thus obtaining a diffusion

approximation. Diffusion approximations have been primarily

used to open networks with homogeneous customers. The works by

Gaver [GAVE 68] and Kobayashi [KOBA 74] are some examples of

this approximation. But as Kobayashi [KOBA 78] points out,

there is no general formula available that helps one to assess

the accuracies of the solutions obtained through the approxima-

tions using either an aggregation or a diffusion.

The third method of approximation involves using mean

value analysis in the case of models which do not have product

form solutions. Notable work in this direction was done by

Reiser and Lavenberg [REIS 80], Bard [BARD 78], and Schweitzer

[SCHW 79) for the analysis of multiclass closed queueing net-

works. But the results are generally correct only in the

asymptotic case. Thcugh Bard and Schweitzer claim that this

16
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method of approximation can be used in the case of multiple

class networks with fixed priority discipline and non-exponen-

tial service time distributions, no such known analysis is

available.

It can be observed from the preceding review that no feasi-

ble analytical or approximate results are available for the

multiple finite source priority model with non-preemptive fixed

priority discipline and arbitrary service time distributions.

Simulation is the most widely used technique to study this

model. But simulation is expensive and time consuming, especial-

ly when the run lengths are long to improve the accuracy of the

results. As an alternative, recently there has been a growing

interest in numerical algorithmic methods to solve the models

for which no tractable analytic results are available. One of

the main approaches used in algorithmic methods is to represent

the state probabilities of a Markov process in the form of a

set of linear equations and to find an efficient solution to

these equations by exploiting the special structure of the matrix

corresponding to the equations. One such related work is by

Raju and Bhat [RAJU 77] who developed numerical algorithms to

analyze finite waiting room capacity queueing models, with mul-

tiple classes.
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1.5 OVERVIEW OF THIS RESEARCH

Chapter 2 contains the details of the solution procedure

for obtaining the mean values of system performance measures

which lead to a set of algorithms. Based on the logic of its

development, the procedure is divided into parts and described

in separate sections. The mathematical relations required for

computation are derived. Then the algorithms are summarized in

a way suitable for adaption as a computer code in section 2.6.

The results of verification of the algorithms using simulation

are illustrated at the end of the chapter along with comments

on the computational aspects of the algorithms.

In Chapter 3, the algorithms developed in Chapter 2 are

first extended to obtain time average marginal and joint prob-

abilities of the number of customers at the service facility,

using Level Crossing Analysis. Then the possibility of using

the algorithms for mixed class models in which some classes

have infinite capacity and the other classes have finite cap-

acity sources is discussed. Finally, conclusions and sugges-

tions for further research are given at the end of the chapter.

18
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CHAPTER 2

SOLUTION PROCEDURE

2.1 INTRODUCTION

Imbedded Markov chain is used as the basic method of

analysis of the model in this research. Out of the possible

methods of approaches discussed in Chapter 1, the supplemen-

tary variable technique is found to be a very difficult method

of analysis for this model, especially when the number of

classes is greater than 2 [JAIS 68]. The method of generalized

stages is restricted to service time distributions with rational

Laplace transforms. Even in cases where it can be used, the

number of states becomes very large compared to that of im-

bedded Markov chain.

In order to achieve the objective of this research, ef-

forts were made to obtain direct formulae for the mean values

of system performance measures which can be related to the

results obtained through imbedded Markov chain analysis. This

resulted in a series of logical and sequential steps which are

described in the following sections.

19
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2.2 BASIC RELATIONS

2.2.1 Relations of Mean Values

A single class queueing system consisting of a finite

source with N customers served by a single server can be re-

presented as in Figure 2.1. Each customer, after spending an

average of l/X time units in the source, arrives at the service

facility and waits in the queue for W time units on the average.
q

The mean service time is l/p time units and after the service is

completed, the customer returns back to the source without any

time loss. This cycle is repeated for each customer. It is

assumed that the system is in steady state which ensures the

existence of well defined and finite limiting average values of

i/X, W and 1/P . After entering the system marked as Box A,q

the customer never leaves it until departure at point b.

Therefore, Little's formula can be applied to the whole system

[STID 78, KOBA 78] which states that the average number of cus-

tomers within the system (i.e., within Box A) equals the average

output of the system (at point b) times the average time spent

by a customer within the system.

The average number of customers at any time in the system

is equal to the total number of customers in the system, which

is equal to N, as the customers return back from the service

facility to the source, without any time loss. The average

20

NIL ..



.0

w

Cl, 0

H w
w a:-

w D
U) 0 f

(f) D 0~ )( J LI
Cy Co D- c

CD

z

zz

0

21



output of the system is equal to pp where p is the utilization

of the server. This is valid under all conditions. The only

restriction is that the service discipline is work conserving

in that the service times of the individual customers are not

affected by the discipline [KOBA 78]. Therefore,

N = pP(l/X + W + l/i)
q

which gives

W = N/pp - 1/p - 1/X (2.1)
q

No assumption was made about the distribution of either the

inter-arrival times or the service times in deriving relation

(2.1). The only requirements are that the system should be

operating under steady state and that the service times of the

individual customers are not affected by the service discipline.

In the case of a finite population model with capacity N, the

effective arrival rate of the customers at the facility is

(N-L)A, where L is the mean number of customers present at the

facility and I/A is the mean inter-arrival time of a customer

[GROS 74]. The mean amount of time a customer spends at the

facility, W, can be related to L using the relation L (N-L)X W.

Using this, the relation W = W + l/w and (2.1), L can be ex-q

pressed as,
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L = N - p/. (2.2)

Lq, the mean number of customers waiting in the queue, is re-

lated to L by the relation L = L + p.q

In the case of a multiple finite source system which has

K(> 2) number of independent sources and a single server, the

flow of customers of each source can be considered separately

in a subsystem and separate boxes like Box A in Figure 2.1 can

be constructed for each subsystem. If the service discipline

is of non-preemptive fixed priority type, which is work-conserv-

ing in the sense described earlier, and if steady state condi-

tions can be assumed to exist, then Little's formula can be ap-

plied to each subsystem as before and the following relations

are obtained for i = 1,2,...,K:

(i) Mean waiting time of class i customer in the queue:

Wqi = Ni/PiW i - ii - i/ i  (2.3)

(ii) Mean time spent by a class i customer at the facility:

Wi = W + I/Vi (2.4)

(iii) Mean number of class i customers present at the facility:

Li = Ni - Pi i1 , and (2.5)
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(iv) Mean number of class i customers waiting in the queue:

L q Li -p i  (2.6)

where pi refers to the proportion of time the server is busy with

class i customers or the time average probability that the server

is busy with class i customers. The utilization of the server is

given by,

K
p = E pi  (2.7)

i=1

Relations (2.3) to (2.7) illustrate that the mean values of

the system performance measures of interest can be obtained if

the pi's (i = 1,2,...,K) can be found. In the next subsection,

the method of obtaining the values of pi's is described using the

theoTy of regenerative processes.

2.2.2 Regenerative Process

A regenerative process {X(t), t > 01 is a stochastic process

which starts anew probabilistically at an increasing sequence,

0 < R1 < R2 < R3 ... , of random epochs on the time axis [0,).

Thus, between any consecutive epochs R and R +l, the portion

{X(t), R < t < RZ+1 } is an independent and identically distri-

buted replicate of the portion between any other two consecutive
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epochs [ROSS 70]. Also, the time interval between two consecu-

tive epochs R and R + is called the regenerative cycle Z,

whose length is represented by T . These lengths of the regen-

erative cycles are independent and identically distributed

random variables.

Suppose that Yz represents a reward earned during the re-

generative cycle Z and that the pairs (T., Y d), 2 = 1,2,..., are

independent and identically distributed. If Y(t) denotes the

total reward earned by time t, then the limiting value of the

average return is given by the following theorem.

Theorem 2.1: If E(jY,.I) and E(T. ) are finite, then

(i) with probability 1,

Y(t) E(Y) as t Co
t E(T)

(ii) E(Y(t)) E(Y) a

t E(T) as t*

The proof of this theorem can be found in [ROSS 70]. According

to this theorem, the expected long-run return is just the expected

return earned during a cycle divided by the expected length of a

cycle.

In the model being studied in this research, X(t) can re-

present the total number of customers present at the facility

at time t and each busy cycle, consisting of a busy period and
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an idle period, can be considered as a regenerative cycle [CHOW

75]. Let YR represent the amount of time the server is busy

with class i customers (i = 1,2,...,K) during the busy cycle Z

and Y(t) denote the total amount of time the server is busy

with class i customers during a time period t. Then as per

1heorem 2.1, pi (which is equal to Y(t) as t - w) can be ob-
i t

tained by taking the ratio of the expected length of time that

the server is busy with class i customers during a busy cycle

to the mean length of one busy cycle. Let E(B) be the expect-

ed length of one busy period, E(Bi), (i = 1,2,...,K), be the

expected length of the busy period during which the server is

busy with class i customers, and E(I) be the expected length

of one idle period. Then, as per Theorem 2.1, for i = 1,2,...,K,

E(Bi)

i= E(B) + E(I) (2.9)

where

K
E (B) Z E E(Bi).

i=l

The idle period starts at the instant when all the cus-

tomers are at their respective sources. Since the inter-arrival

time of each customer of class i, (i - 1,2,...,K), follows an

exponential distribution with mean 1/Xi as per the model des-
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cription, the mean time interval after which the first cus-

tomer of class i arrives at the service facility, after the

start of an idle period is I/NiXi. A customer of any class

can terminate an idle period and therefore the mean length of

the idle period is given by

K

E(I) = [ NiXi]-i (2.10)
i=l

Since in relation (2.9) only the values of E(Bi)'s are

unknown, the next step in the solution development is to find

the values of E(Bi), (i = 1,2,...,K). Imbedded Markov chain

analysis is used for this purpose.

2.2.3 Imbedded Markov Chain Analysis

As discussed in Chapter 1, in the model being studied in

this research, the epochs at which customers depart from the

service facility constitute a set of regenerative points. As

this model has K distinct classes of customers, the numbers of

customers of these K different classes present at the service

facility at departure epochs form a Markov process. The states

of the Markov chain of this process are expressed by vectors

which consist of K elements corresponding to the numbers of

customers of K classes present at the facility at the departure

epochs. Let X and X denote the states of the process at-Ti
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the nt h and (n+l)s t departure epochs, respectively, (n 1,2,...).

Let the elements of the row vectors i = (JlJ2 .'Ji,"'jK ) and

U = (UlU 2 .... ui,... ,UK) represent the numbers of customers of

th
the corresponding classes present at the facility at the n and

the (n+l) departure epochs, respectively. Then the elements

of the transition probability matrix corresponding to this Markov

chain are given by the conditional probabilities, P[Xn+I = u1X n = j],

for different possible values of the elements of u and i. The

total number of states of the Markov chain is given by the number

of all possible combinations of the numbers of customers of K

classes that can be left behind at the facility by a departing
K

customer. This is equal to I E (Ni+l)} - 1, which is denoted as
i=l1

(m+l) for the sake of simplicity.

As this type of imbedded ijarkov chain is finite, aperiodic,

and irreducible, all its states are ergodic [KLEI 75]. This en-

sures the existence of steady state probabilities. Let the row

vector containing the steady state probabilities of this Markov

chain be represented by A. It has (m+l) elements corresponding

to the (m+l) states of the Markov chain. Two ways are used to

represent the elements of this vector. One way is to represent

th
a typical element of A as AV, which refers to the j element

of A. In the second way of representation, A(v) refers to the

steady state probability that just after the departure of a

customer, the state of the process is v (vl,v2 ,...,vi,...,VK).
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The second way of representation is used whenever the informa-

tion regarding the number of customers left behind by a depart-

ing customer is of importance.

2.2.3.1 The Relation Between E(Bi) and A

Let E(R) represent the expected number of customers served

by the server during a busy cycle and pi represent the propor-

tion of class i customers served during a busy cycle, i.e., the

steady state probability that a departing customer is of class

i. Then E(R i), the mean number of class i customers served dur-

ing a busy cycle, is given by, for i 1,2,...,K,

E(Ri) = E(R) pi (2.11)

and therefore

E(Bi) = E(Ri)/Ii

E(R) pi/i . (2.12)

As per the second way of representing the elements of A,

A(O) stands for the steady state probability that a departing

customer leaves behind an empty facility, where 0 stands for

the vector with all zero elements, i.e., 0 - (0,0,...,0). This
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implies that A(O) is the steady state time average proportion

of served customers who terminate busy periods, and that on the

average, one out of every [A(O)) customers terminate a busy

period. Therefore,

E(R) = [A(O)]-  (2.13)

The quantity pi can be divided into two parts: p 1 and p12'

The first part, pil' is the steady state probability that immedi-

ately after the termination of an idle period, the first depart-

ing customer is of class i. As the steady state probability

that a departing customer starts an idle period is A(O) and the

probability that an idle period is terminated by a class i cus-
K

tomer is N i iX i N i] , [JAIS 68), pil is given by

K 1- (2.14)ii~l
p il = A(O) N iX i[ EINi Ai (.4

The second part, pi2' is the steady state probability that

excluding the first departing customer during a busy period, any

other departing customer is of class i. If the elements of the

row vector v (vl,v2 ,...,vl,...,vK) represents the number of cus-

tomers of the corresponding classes left behind by a departing

customer, then a class i customer will be the next customer to

be served and to depart as long as vi # 0 and v = 0 for all

30
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j < i. This is because of the fixed priority service discipline.

Therefore,

Ni K Nz

Pi2 = [ Z { Z A(v)}] (2.15)
v.1 Z=i+l vz=0

where v= 0 for all j < i, in v. As pi l + p12 and from

(2.11) to (2.14), for i = 1,2,...,K,

K -1
E(Bi) = /i[Ni( NA +

N N (2.16)
1 K 9

A(O) E Z E A(v)})]
v.=l £-i+l v =0

where v. = 0 for all j < i, in v.

In equation (2.16), the only unknown quantities are the

elements of the steady state probability vector, A. Therefore,

the next step in the solution procedure is to find the values of

the elements of A.

2.2.3.2 Obtaining The Elements of A

Let P represent the transition probability matrix of the

Markov chain. Then the vector A can be uniquely determined by

solving the system of linear homogeneous equations

A(I-P) = 0 (2.17)
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subject to the normalizing condition

m+1
E A =1 (2.18)

j-1

In (2.17), I represents the identity matrix of size (m+l)x(m+l).

Of the (m+l) equations in (2.17), only m are independent. So

the matrix (I-P) does not have an inverse. If one of the (m+l)

equations in (2.17) is eliminated then the remaining m equations

along with (2.18) can be used to obtain a unique solution for A.

Let the first equation in (2.17) be removed, which is equivalent

to eliminating the first column of (I-P). Expressing A1 ,A2 ,...,

Am in terms of A 1+l, the system of equations in (2.17) can be

written as

A (I-P) A m+i Z . (2.19)

In (2.19) the.row vector AI contains the first m elements

of A, the matrix (I-P) is of size mxm and consists of all elements

of (I-P) except those in the last row and the first column of (I-P)

and the row vector Z contains the negative of the last m elements

of the last row of (I-P). Now the m equations in (2.19) are in-

1
dependent and therefore the matrix (I-P) has an inverse. Multi-

plying both sides of (2.19) by the inverse of (I-P) , the elements

of A1 are given by,
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A =Am+ I -(2.20)

By using equations (2.20) and (2.18), the values of all the

steady state probabilities can be obtained.

At this stage, the problem reduces to the following:

(i) Generation of the elements of the transition prob-

ability matrix P and from these, obtaining the

elements of the row vector Z and of the matrix

(I-P)1

(ii) Inversion of (I-P) "

(iii) Obtaining the values of A., j = 1,2,...,m+I,

using (2.20) and (2.18).

These three steps are described in the following sections.

2.3 GENERATION OF THE ELEMENTS OF P

As stated in section 2.2, the elements of P are given by

the conditional transition probabilities, P[X - uIXn- jj.

The calculation of these probabilities is discussed under two

sets of conditions, depending upon whether the n th departing

customer leaves behind a non-empty or an empty facility.

Under the first set of conditions, the elements of I, which

gives the state of the process at the nth departure epoch, are

such that there is at least one non-zero element, J., (k - 1,2,

,K), with J= 0 for all i < Z, if 1 1. This implies that
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the n th departing customer leaves behind at least one customer

of class I at the facility without any customers of higher pri-

ority classes waiting for service. Then, because of the fixed

Stpriority discipline, the next, i.e., the (n+l)s , customer to be

serviced belongs to class 9. Therefore, in order to have the

state of the process at the (n+l)st departure epoch to be

! (Upu,2,..... UK), the number of arrivals during the service

period of the (n+l)s t customer has to be (u - j1+l) for class Z

and (ui - ji) for classes i = 1,2,...,K, but not L. Therefore,

the conditional probability is given by

P[XX = i Probability[number of arrivals during
the (n+l)st service time
M (u-j+l) ,(ul-Jl) ,...

4 . I (U J _- J Z-1) (U L+l-J k+ ) ,

.... (UK-JK) - -X I and the

(n+l)st service time is that
of a class £ customer, i.e.,
S£]

As per the description of the model, the sources are finite

and independent of each other and the times spent by the customers

of each class at the corresponding sources are exponentially dis-

tributed random variables. Therefore, the number of arrivals of

each class customers at the facility within a given time inter-

val is a binomially distributed random variable, independent of

the arrivals of other class customers. Let p(mi;ni,t) denote the
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probability that the number of arrivals of class i customers,

(i = 1,2,...,K), at the facility within a time period t is m i

when there are ni customers of class i at the facility at the

P beginning of the time period. Then,

P ;it) Y N1-en11)m( (2.21)

where m,n. =O,l,2,...,N., m.i+n.i < N.and 1/XIj is the mean

time spent by a class i customer at the source.

Now, for j 0 and J. 0 if i < Z. and 9. 0 1, the condi-

tional probability can be written as

K
P[X= .+I =x ( P(u .- i ;i~s.d }p(u 9.-j9.+;j ts k )dF(s 1) (2.22)

0 i=l
#9.

where F(s9. is the distribution function of the service time of

class k. customer. After substituting the values of p(u i-iiJi§s )

and p(u9.-J9 +l;j9.,s.) from (2.21), equation (2.22) becomes, for

#0 and J, 0 if i < 9.,

PX+uIX.-I 1, of C I dF(s .  (2.23)

where

KT (N9.-jp .  (2.24)

il~i-i) 91j
#9. u
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and

K+ -xsI N- u t-
ot{np (l-e- ) -(e- ) }(l-e- ) (e )i-i (2.25)

thUnder the second set of conditions, the n departure leaves

behind an empty facility, i.e., in vector J., J, - 0 for i - 1,2,

...,K, thereby starting an idle period. Then the (n+l)s t service

time depends on the class of customer who terminates this idle

period. This situation is illustrated by Figure 2.2 in which

the nth customer leaves at A starting an idle period. The cus-

tomer who arrives at B terminates the idle period and after being

FIRST ARRIVAL

X (,o,...,o) MORE ARRIVALS
-=n _ xn+l- (ulu 2,..

A B C

IDLE PERIOD (n+l)st SERVICE TIME

nth DEPARTURE (n+l)st DEPARTURE

BEHAVIOR OF THE PROCESS WHEN J- 0, FOR i 1,2,...,K.

FIGURE 2.2
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served becomes the (n+l)s t departure at C. From B to C the pro-

cess behaves as if at point B there is a departure leaving be-

hind only that customer who terminated the idle period. Because

any class customer can terminate the idle period at B, the re-

quired conditional probability is given by

PIX u~l IXn= 01=

K
Z fProb[idle period is terminated by a class (2.26)

i customer] Prob[X _=ulX j]]

where 0 refers to the row vector containing all zero elements and

the elements of the vector _ are given by jZ - 1 if Z - i and

J9 = 0 if k 0 i. As stated in section 2.2.3.1, the probability

that an idle period is terminated by a class i customer is equal

to Ni Xi Z N X So equation (2.26) becomes
i 1=1 i

K K -1
P X =uIX 0] = Z {N A ( Z NiAi)-p[x_ --UIX (2.27)
--n+l - -n- i ill i N ) P[+l -n

where P[X =ujX n=] with j = I if X - i and J, 0 if Z i,
n+il~

can be obtained from (2.23).

The evaluation of the integral in (2.23) depends upon F(s£)

which is the distribution function of the (n+l)s t service time.

In Appendix B the integral is evaluated when the density function
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Cf S Z is exponential, hypo-exponential, or hyper-exponential for

the purpose of illustration. These are the density functions

frequently used to represent service demands [KOBA 78] because

these density functions have rational Laplace transforms. In

computer systems, the coefficients of variation (the ratio of the

standard deviation to the mean) of the service time distributions

are found to be greater than I [ANDE 721 and thus hyper-exponen-

tial density function is appropriate in such cases.

Once the elements of the transition probability matrix are

generated, the elements of (I-P)1 and the row vector Z can be

easily obtained. The next step then is to find the inverse of

(I-P)I which is described in the next section.

2.4 INVERSION OF THE MATRIX (I-P)

2'.4.1 Introduction

The inversion of a matrix becomes tedious and time consum-

ing as its size increases. The size of (I-P) is mxm where m is

K
equal to { H (Ni+1)1-2 . The value of m becomes very large even

i=i1

for small values of Ni's. One of the goals in the development

of the solution procedure is, therefore, to develop an efficient

numerical algorithm for inverting (I-P)

A good numerical technique used for inverting any matrix

should take into account and exploit the structure of that matrix.

38



I

In some cases, it may be possible to alter the structure of a

matrix so as to suit it to an efficient inversion technique. In

the case of the matrix (I-P) , in addition to altering the struc-

ture of the matrix, it is necessary also to modify an available

inversion technique to suit the altered structure.

There are some interesting matrix structures which are en-

countered in the case of finite Markov chains of queueing models.

Among those, the two types most related to this research are al-

most left triangular and left triangular structures [RAJU 77].

Definition 1: A nxn square matrix C is almost left triangular

if its elements are such that, for i = 1,2,...,n,

Ci,j = 0 for all J > i+l

Definition 2: A nxn square matrix C is left triangular if its

elements are such that, for i = 1,2,...,n,

c ij = 0 for all j > i.

At this stage it is necessary to introduce the terminologies, the

superdiagonal and the main diagonal of a square matrix.

Definition 3: the super diagonal of a nxn square matrix C con-

sists of the elements cl' j , such that j = i+l for i = 1,2,...,n.
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Definition 4: The main diagonal of a nxn square matrix C con-

sists of the elements ci'j, such that j = i for i - 1,2,...,n.

If the structure of the matrix (I-P) in equation (2.16) is

almost left triangular, then the matrix (I-P) 1 has a left tri-

angular structure. The advantage of having a matrix with left

triangular structure and all non-zero elements along the main

diagonal is that computationally efficient methods are available

for the inversion of such a matrix (SCHR 73]. But, in the case

of the model in this research, it is not possible to obtain a

left triangular structure with all non-zero main diagonal ele-

1ments for the matrix (I-P) . It is, however, possible to place

most of its elements into a left triangular form while having

only a few elements above the main diagonal by a suitable

arrangement of its column and row states. This arrangement is

also advantageous because the inverse of the left triangular

part .of (I-P) can be obtained first using the already avail-

able technique and then this inverse can be modified taking the

elements above the main diagonal into consideration. This di-

vides the procedure of inverting (I-P) into three basic parts.

They are, (i) arrangement of the row and column states of (I-P)1

to place most of its elements into a left triangular form leaving

the remaining elements above the main diagonal; (ii) inversion

of the lower triangular part using an available numerical tech-

nique; (iii) modification of the inverse obtained in (ii), taking

the elements above the main diagonal into consideration.
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These are explained in detail in the following subsections.

2.4.2 Arrangement of the States

The arrangement of the states of (I-P)1 is done prpgressive-

ly, starting with the states of the transition probability matrix

P, then the states of the matrix (I-P), and finally ending up

with matrix (I-P) . As matrix (I-P) is obtained by deleting

the first column and the last row of (I-P), the main purpose of

the arrangement of the states is to group most of the elements of

(I-P) into an almost left triangular form with non-zero elements

along the super diagonal. This is helped by the following facts:

(i) the imbedded Markov chain of the model has unit jumps at

regeneration points which means that, at departure epochs, the

number of customers at the facility decreases by at most one;

(ii) because of the fixed priority rule, the number of customers

of class Z (k = 2,3,...,K) can decrease by one at departure epochs

only if there are no customers of all higher priority classes

present at the facility at the previous departure epoch.

2.4.2.1 Arrangement of the States of P

A typical row state in the matrix P represents the number

of customers left behind at the facility by the nth departing

customer (n = 1,2,...). It is denoted as X - J, where j is the

row vector containing the elements J*J2,.'JK which represent
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the numbers of customers of corresponding classes. Let Xi

-n

stand for the i th row state, i = l,2,...,(m+l). A typical

column state in P represents the number of customers left be-

hind by the next, i.e., (n+l)s t departing customer. It is

denoted as X+l = u where u is the row vector containing the

elements Ul,U2,.,.u K which represent the numbers of customers

of corresponding classes. Let vX+l stand for the vth column

state. In P the arrangement of row states is identical to

that of the column states, i.e., for i = 1,2,...,m+l, ix =

Xn+I , when v = i.

The method chosen to arrange the states in P forms a con-

venient basis from which the final arrangement of the states of

(I-P) and (I-P)1 emerge, yielding the desired matrix structures.

This method of arrangement is explained with respect to the row

states which are arranged as per the following steps:

(I) Set i 1 and let the first row state from the

top be equal to

I X 1

X n = (NI'N2 ''.. NK-1 NK-1).

Set = N z for Z = 1,2,...,K-1 and J = NK- 1.
K

(ii) Set i i+l and ki = K. If i < { n (Nk+l)}-l,
k=l

go to step (iii). Otherwise, go to step (vi).
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(iii) If J 0 0, set J 1 -1 and go to step (v).

Otherwise, go to step (iv).

(iv) Set J N ii and £i1- i-i. Go to step (iii).

th
(v) Set the i row state

Xi
--n J'2 K'

Go to step (ii).

(vi) Stop.

K
Because the maximum value of i is set as m+l - { H (Nk+l)'l1,

k-i
the last row state generated is

XM+1 . (0,o,...,o).

To illustrate the above steps, an example is considered in

which there are three classes of customers with N1 - 2, N2 - 1,

and N 2. As per step (i) the first state is X 1. (2,1,1).

When i 2, steps (iii) and (v) result in X2  (2,1,0). When

i - 3, as J3- 0, step (iv) changes j3 to N - 2 and step (iii)

changes J2 to 1-1 - 0, resulting in (2,0,2). The next two

4 5
states are X = (2,0,1) and X - (2,0,0). When i - 6, because--n -- n

J3 and J2 are zeroes, steps (iii) and (iv) change J3 to N3 - 2,

to N2 - 1, and Jl to 2-1 1. Therefore X- (1,1,2). Pro-
-43
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3
ceeding in this way, when i = { f (Nk+l)}-l = 17, the last row

k=l
state obtained is X = (0,0,0). The column states are ordered

-- n

in the same way as the row states and the resulting P matrix is

given in Figure 2.3.

To help in the modification of the arrangement of the states

in (I-P) matrix, the row states in P are now grouped into K ordered

row sets based on their elements. The row states containing the

maximum number of customers of the first (K-i) classes are grouped

together to form row set 1. These are the first NK row states

from the top. The row states containing the maximum number of

customers of first (K-2) classes only are then grouped together

as row set 2. These are the next NK_(NK+1) row states. In

general, the row set kl, (kl = 1,2,...,K), contains those row

states with the maximum number of customers of the first (K-kl)

classes only and the total number of row states in this set is

given by

K
r(kl) = N KkI+I{ I (N +1)) . (2.28)

£=K-kl+2

The last row set K does not contain the maximum number of cus-

tomers of any class. The column states of P are also grouped in

the same way as the row states, starting from the left. This

arrangement of the states does not place most of the elements

of P in an almost left triangular structure.
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In the example considered, the rows are divided into 3

ordered sets. The row set 1 consists of those rows which con-

tain the maximum number of customers of classes 1 and 2; and

there are r(l) = 2 of such rows. The next rows containing the

maximum number of customers of class 1 only are grouped as row

set 2 and the number of rows in this set is given by r(2) =

1{(2+1)} = 3. The third row set consists of r(3) - 2{(1+1)(2+1)}

=12 rows which do not contain the maximum number of any class

customers. Column states are also grouped in the same way and

this arrangement is illustrated in Figure 2.3.

The row states and the column states of their respective

first (K-1) sets contain the maximum number of class I cus-

tomers. The main diagonal elements in P along these rows and

columns are all zeros as the corresponding row and column states

cannot communicate with each other. The super diagonal of P

contains zero elements corresponding to the noncommunicating

row and column states.

2.4.2.2 Arrangement of the States of (I-P)

Matrix (T-P) is obtained by subtracting P from the identity

matrix I of size (m+l)x(m+l). All the non-zero elements of P

except the main diagonal elements become negative in (I-P). The

zero elements along the main diagonal of P become 1 and all other

zero elements remain as zeros in (I-P). This implies that the
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main diagonal elements of the first (K-i) row sets of (I-P)

are 1 and the super diagonal of (I-P) contains some zero ele-

ments. Also a major part of the elements of (I-P) do not form

an almost left triangular structure.

To group most of the elements of (I-P) into a left triangu-

lar structure and to have all non-zero elements along the super

diagonal, the column states of (I-P) are reordered keeping the

ordering of row states unchanged. The arrangement of the column

states can be different from that of the row states in (I-P), be-

cause the order of column states represents only the order in

which the linear equations in (2.16) are arranged. The reorder-

ing of the column states is done by placing the columns of the

last column set, K, of P in the first positions from the left of

(I-P), the columns of the column set (K-i) in the next positions,

and so on and placing finally the columns of the set I of P in

the last positions of (I-P). The order of columns within a set

is not altered. This procedure is formally stated in the follow-

ing steps:

(i) Renumber the column sets in P in such a way that

set kl, (kl = 1,2,...,K) becomes set k2 where

k2 = K-kl+l.

(ii) Rearrange the sets in the ascending order of k2

starting from the left in (I-P).

47



Applying these steps to the example, column set 3 of P

which consists of the 12 column states from (1,1,2) to (0,0,0)

now becomes column set I in (I-P); column set 2 of P which con-

sists of 3 column states from (2,0,2) to (2,0,0) now becomes

the column set 2 in (1-P) and finally the column set 1 becomes

the last column set 3 in (I-P). It is illustrated in Figure 2.4.

This reordering of the column states places all the elements

of (I-P), except the unity elements along the rows of the first

(K-l) row sets, in an almost left triangular structure. Because

of the way in which the column states are now ordered, these

unity elements are located above the super diagonal in column

sets 2 through K and arranged along (K-l) lines parallel to the

super diagonal. If these lines are numbered from left to right,

then the unity elements along line t lie in column set (t+l) and

row set (K-t). There are r(K-t) unity elements along line t,

where r(K-t) can be obtained from (2.28). The total number of

these unity elements above the super diagonal is equal to the

total number of rows in row sets 1 through (K-1) and is given by

K-1
U E r(kl) (2.29)

kl=l

Substituting the value of r(kl) from (2.28), and simplifying,

equation (2.29) becomes

K-1 K

U -E NK-kl+l IT (N+l)}]• (2.30)
kl=l i=K-kl+2
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It can also be noted that the number of columns in column set

k2, (k2 - 1,2,...,K) in (I-?), is equal to the number of rows

in row set (K-k2+l) which is given by r(K-k2+l) in equation

(2.28). Therefore, the unity element in the jth column of column

set k2, (k2 - 2,3,...,K), above the super diagonal of (I-P) is

located in the jth row of row set (K-k2+1). The super diagonal

of (I-P) now contains all non-zero elements.

2.4.2.3 Arrangement of the States of (I-P)1

T1.e matrix (I-P) is obtained from (I-P) by deleting the

first column and the last row of (I-P). The first column of

(I-P) is

lx = (N_1I,N2 ,N3 ,... ,NK)

and the last row is

m+1X = (o,o,...,o)

These are deleted and the resulting (I-P) matrix has most of

its elements in a left triangular structure with non-zero ele-

ments along the main diagonal and some unity elements above the

main diagonal.
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Because the last row and the first column are removed frcm the

row set K and the column set 1 respectively of (I-P) to get

(I-P)I , (2.28) is revised to give the number of rows in row set

kl of (I-P)1 as follows:

K
NKkl+l {  T (N Z+1)1},f=K-kl+2

r'(kl) if kl - 1,2,...,K-1 (2.31)

K
N I f2(N+I-l)}-l if kl = K.

X =2

The number of columns in column set k2 of (I-P) is equal to

1the number of rows in row set (K-k2+l) of (I-P) , i.e., r'(K-k2+l).

Now, with this arrangement of row and column states in (I-P)1

and (I-P), the states corresponding to the elements of the steady

state departure probability vector A in equation (2.19) are in

the same order as that of the row states of (I-P)1 and (I-P). That

is, element A, j = 1,2,... ,m, corresponds to the row state X!-n1

of (I-P)1 and (I-P) and Am+I corresponds to m+l - (00..,0)

of (I-P).

2.4.3 Inversion of a Left Triangular Matrix

1

The left triangular part of (I-P) matrix can be inverted

using the explicit recursive expressions developed by Schwartz
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et al. [SCHR 73] for the elements of the inverse of a left tri-

angular matrix. Let C be a left triangular matrix of size mxm

with elements ci s (i,j - 1,2,...,m), such that c1 . # 0 for

all J. If matrix G is the inverse of C, then the elements of G

are given by, for i,j = 1,2,...,m [SCHR 73],

1/cj~j if i = j

i

gi,j i/c [- n= E+Cn,gi n if J+l < i < m (2.32)

0 , Otherwise

It can be seen that G is also a left triangular matrix. An

examination of (2.32) makes it clear that gi,js can be calcu-

lated recursively starting with column m of C and proceeding

left towards column 1. Within each column J, gijs are cal u-

lated starting with i = j and proceeding down towards i = m.

It is necessary at this stage to obtain a relation with

respect to gj s and certain elements of C, which is very use-

ful in the calculation of steady state departure average prob-

abilities, to be considered later. Let the last row of C be

represented by c and the jth column (j = 1,2,..., m) of G be
-- n

represented by j. Then the product of the vectors-c and j

is equal to zero for j - 1,2,...,m-l, as C G = i. That is
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m
E c g 0 ,for j = 1,2,...,m-l.

n-i m,n n,j

Rearranging the terms and simplifying,

m-1-1
= - [ Z c ],for j = 1,2,...,m-1 (2.33)

m'J c mm n=l m,n n,j

2.4.4 Modification of the Inverse

2.4.4.1 Preliminaries

In this section the inverse of the lower triangular part

of (I-P) obtained through the relations developed in section

2.4.3 is modified to take into account the unity elements which

lie above the main diagonal. This modification procedure is

based on the Product Form method of obtaining an inverse [HADL 61].

In this method, in general, if a matrix C1 is formed by replacing

th
the s column c with a in a matrix C of size mxm, whose inverse--s

C-i is known, then C11 can be obtained by performing the follow-

ing steps:

(i) Compute the column vector, y - C-1 .

(ii) Form the column vector,

-Yl  -Y2  -ys-I 1 -ys+I -Yn
Y S s y Ys y YS YSy

wherey O. (If Ys 0, then C1 has no inverse.)

53



th
(iii) Replace the s column of the identity matrix I

of size mxm with the vector x to obtain a matrix

E.

(iv) Obtain the inverse of C1 as

C =E • C
- 1

This method is chosen because of its simplicity and the

potential for obtaining recursive relations. The above steps

will be referred to as Fundamental Steps (i), (ii), (iii), and

(iv) in subsequent discussions.

After the columns and rows of the matrix (I-P) are grouped

into sets as per the arrangement given in section 2.4.2, the

unity elements above the main diagonal of (I-P) are located

in the columns in the column sets 2 through K with one unity

element in each column. The modification of the inverse is done

by considering each column containing a unity element above the

main diagonal at a time, starting with the first column of

column set 2 and ending up with the last column of column set K.

As the unity elements within each column set are located along

a distinct and different line, the modification procedure is

divided into (K-i) phases, one phase for each column set. Phase

p, (p = 1,2,...,K-1), modifies the previously obtained inverse

by taking into consideration the unity elements above the main

diagonal in the columns of column set (p+l). Within each phase
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there are a certain number of iterations, each iteration modi-

fying the inverse, taking into consideration one column in the

corresponding column set. The number of iterations in phase p

is given by r'(K-p) in equation (2.31) because the number of

columns in the corresponding column set (p+l) is equal to the

1
number of rows in the row set (K-p) in (I-P)

Before describing the modification procedure, it is neces-

sary now to briefly describe the symbols used in this section.

(a) tr(i,j) specifies the row number in (I-P)I of

the jth row of row set i, (i = 1,2,...,K). j

takes on values from 1 to r'(i). kr(i,j) is

given by, for i = 1,2,...,K,

i-i
Pr(i,j) = Z r'(il) + j (2.34)

il=l

where r'(il) is given in (2.31).

(b) kc(k,n) specifies the column number in (I-P)1

of the nth column of column set k, (k = 1,2,...,K).

n takes on values from i to r'(K-k+l). Ic(k,n) is

given by, for k = 1,2,...,K,

k-l
Z c(k,n) E Z r'(K-kl+l) + n . (2.35)

kl-l

tc(k,F) represents the column number in (I-P)1
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of the last column of column set k. In other words,

Zc(k,F) = tc(k, r'(K-k+l)) with F = r'(K-k+l).

To make the expressions simpler, Zc(k,n) is

written as Xn in cases where it is known clearly

that the column set under consideration is k.

Similarly kF stands for kc(k,F).

(c) The row number in (I-P) of the unity element above

the main diagonal in column Zc(k,n) is denoted as

R(Zc(k,n)) which is equal to Zr(K-k+l,n) as per sec-

tion 2.4.2.2 and the symbol introduced in part (a).

Whenever Zc(k,n) is written as Zn, R(Zc(k,n)) is

replaced by R(kn).

(d) The matrix containing only those elements which

1
form the left triangular structure of (I-P) is

represented by C and its inverse by G.

(e) The matrix which contains all elements o, C and all

the unity elements above the main diagonal, from

left up to and including the one being considered

in the ith iteration of phase p, is denoted as Cp:i

p~i 1 (K-1):Fand its inverse as G . Therefore, (I-P) is C

as there are a total of (K-1) phases and as F here

stands for the number of columns in column set K

which are taken into consideration in phase (K-l).

At this stage it is necessary to prove the existence of

inverses for the matrices Cp:i for I < p < K-1 and 1 < i < r'(K-p).
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The following points [HADL 611 are used in this connection with

respect to column vectors.

(i) A set of m column vectorsA, i - 1,2,...,m, from

the m dimensional euclidean space, Em , is said to

be linearly independent if the only set of ai for
m

which E a a = 0 holds is a 2... a M 0.
i=I -- m

(ii) All the columns of a nonsingular matrix form a

linearly independent set.

(iii) A set of m linearly independent column vectors

i = 1,2,...,m, which spans Em forms a basis for Em .

(iv) Any column vector b in E can be expressed as a

linear combination of the column vectors A, i - 1,2,
m

... ,m. That is, b = E i.
i=l

(v) Given a column vector b # 0 in Em. Then, if in the

expression of b as a linear combination of the basis
m

vectors 1, i.e., b = Z O1ai, any vector a for

which B # 0 is removed from the set Al'a2,...,a

and b is added to the set, the new collection of m

vectors is also a basis for Em and therefore linearly

independent.

Any left triangular matrix with all non-zero elements along

the main diagonal has an inverse [SCHR 731. With the arrangement

of the column and row states as per section 2.4.2, the matrix C

containing all the elements of (I-P) which form the left tri-

angular structure, has non-zero main diagonal elements and
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therefore has an inverse. So its m columns are linearly inde-

pendent and form a basis for Em as per (ii) and (iii). In

iteration 1 of phase 1, the inverse is obtained for CI , which

is the same as C, but with a unity element above the main di-

agonal in column kc(2,1), which is column I in column set 2.

Let a represent the column Zc(2,l) of C. Because C is
-ic(2,1)

a left triangular matrix, elements from rows kc(2,1) to m are

the only non-zero elements of aRc(2,1)" Let b represent the

1:1 ___

column £c(2,l) of C Now b has all elements of £c(2,1)

with an additional unity element in row R(kc(2,1)). As per

(iv), b can be expressed as a linear combination of the m

columns of C and let the corresponding coefficients be denoted

as $i, i = 1,2,...,m. Because the elements in rows Zc(2,l) to

m of b and a (2,1) are equal, and because column a'2 can-

not be represented as a linear combination of the other (m-l)

columns of C as per (i), 8 c(2,1) cannot be equal to 0. As

per (v), if a£c(2,) is replaced by b in the original set of

m columns of C, then the new set is linearly independent.

Therefore the matrix CI :l, which has the new set of m columns,

has an inverse.

In each iteration of each phase, a unity element is added

to C in different rows. Therefore, following the same arguments

given before, the existence of inverses Gp :i for all p and i

can be proved by induction. This ensures that the values of

Ys 0 in Fundamental Step (ii).
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Instead of going through each iteration in each phase to

obtain the final inverse G (K- 1) :F of (I-P) , the following ap-

proach is used:

(a) In phase 1, Fundamental Steps (i) through (iv)

are performed in iterations (1) and (2) and the

expressions of the elements of the inverse, G

and G1 :2 are obtained.

(b) Based on the results in (a), general expressions

l:n
for the elements of the inverse G n

, which is ob-

tained after the nth iteration, are developed and

proved by mathematical induction.

(c) Using the results of (b), expressions are written

1:F
for G :

, the inverse obtained after all iterations

in phase 1.

(d) By comparing the elements of G and G1F , the ex-

pressions for the elements of G2 :F are developed.

1:F
(e) Based on the expressions for the elements of G

2:Fand G2 , general expressions for the elements of

Gk:F the inverse obtained after k phases, are

developed. These are proved by mathematical induc-

tion.

k:F
(f) Based on the expressions for the elements of G

the expressions for the elements of the final in-

verse G(K - 1 ) :F are developed.
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These steps are explained in the following subsections. It

is helpful to recall now the relations gij - l/c ij if i - J,

and gij - 0 if i < J from (2.32). These relations are used in

many simplifications in the following subsections.

2.4.4.2 Inverses After Iterations (1) and (2) of Phase 1

In phase 1, the inverse G of the matrix C is modified, tak-

ing into consideration the unity elements above the main diagonal

in columns of column set 2. There are r'(K-l) iterations in this

phase corresponding to the r'(K-l) number of columns of column

set 2.

Iteration (1):

In this iteration G is modified because of the unity element

above the main diagonal in the first column of column set 2 which

is the column Zc(2,1) of (I-P) . The unity element in this column

is located at position £r(K-l,l). So, with reference to the

Fundamental Steps, j is the column kc(2,l) of (I-P) and s = ic(2,1).

Fundamental Step (i):

y=G R

G is a left triangular matrix with its elements g -ij W 0

if i - j from (2.32). The elements of j, which is column k(2,1)
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of (I-P) 1
, are given by

I , if i - R(i)

q = cilk, if i > L. (2.36)

0 , Otherwise

where £i Ic(2,l) and R(U) = ir(K-1,l). The i th element of y

is obtained from

m

Yi = E g1 4qj , for i = 1,2,...,m.
j=l '

Substituting the values of q from (2.36) and using the relation

gl,j = 0 if i < J, the values of yi are given by

i

Y, = gi,R(tl) + Z g i,jcj, 1 ,

(2.37)

for i = 1,2,...,m.

Fundamental Step (ii):

-Yl -Y2 Y1-1 1 Y1+l Ym .x :(Y ' I Y 'Y-I' Y- 1- "'''

From (2.37) and recalling that gjj = 1/c i for all j from (2.32),
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YX1 = [g£1,R(Z1) + 1]

The i th element of x is now given by

1g if i= U[gLl,R(2tl) + i]'i1i=t

xi  (2.38)

[gi,R(i1) + Z gi I

1glRZ)+ 1] Otherwise.

At this stage it is helpful to introduce additional nota-

tions to simplify the task of representing different quantities.

Equation set (2.38) can be rewritten as

x. = -b(2,ti,i) , for i = 1,2,...,m , (2.39)

where

b(2,£l,i) = [rl(2,lUi) + f(2,U,i) (2.40)
v(2,tl)

where

Sgi,R(.1)' if 1 < i < LI

or
ri(2,£I,i) = Li < i < m (2.41)

0 if i £I
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-1, if i I

f(2,kl,i) - (2.42)
i

g 1c 1 1 9 Otherwise

and

v(2,k1) = g£1,R(t1) + 1 . (2.43)

In the notations just introduced the first index within

the brackets signifies the fact that column Li, being considered

in this iteration, is a member of column set 2.

Fundamental Step (iii):

E is obtained by replacing the £ith column of I with x. The

elements of E are now given by

-b(2,tl,i), if j U Li and

i - 1,2,...,m

e -

el,j

1 , if j - 1,2,...,m, but i I, (2.44)

and i j

0 , Otherwise

where b(2,tl,i) is given by (2.40).

63



Fundamental Step (iv):

G1:1 f E • G

where, as per the notation introduced, C 1:1 is the inverse of

C 1 : which has the same elements as C and an additional unity

element in column kc(2,1) and row tr(K-l,l). The elements of

G 1:  are obtained from

1:1 m
gi,j =i e .g I if i,j f 1,2,...,m

Substituting the values of ei£ from (2.44), the values of gi1:

are now given by, for j = 1,2, ... m,

-g 1 ,jb(2,£l,i) , if i = £I

gi,j=
-J~~ 1:1 5i~-~,Ohrie (2.45)i'jgij - g£jb(2,£1,i) ,Otherwise.

Equation set (2.45) can be rewritten as, for j f 1,2,...,m,

( -gz,j d(2,Z1,k1,i) , if i = Li

11 I
g : (2.46)
i,j

j d - d ,,, , Otherwise
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where

d(2,1,t1,i) = b(2,il,i) , for i 1 l,2,...,m (2.47)

d(2,l,kl,i) stands for the coefficient of gi,,j in the

expression for the element located at the i
th row and the j th

column of the inverse matrix, obtained after including the

unity element above the main diagonal of the column i of

(I-P) , which is also a member of the column set 2. Here £1 -

tRc(2,1).

It may be observed here that in the calculation of the ele-

ments of G the structure of the previous inverse G was used

to the extent that g ij = 0 if i < J.

Iteration (2):

In this iteration G. is modified considering the unity

element above the main diagonal in column Zc(2,2) of (I-P)
1

which is column 2 in column set 2. So here q is the column Z2

of (I-P) s = L2, and R(X2) = kr(K-1,2), where t2 stands for

c(2,2).

Fundamental Step (i):

Y GI R
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The elements of , are given by

I, if i R(k2)

q ci£2 if i > £2 (2.48)

0 , Otherwise

Y Eg qj , i =1 .
J1

Substituting the expressions for gi1j and qj, and simplifying

using £2 > ZI and noting that gJ- 0 if j > U1, y7 is given

by

S- g£1,R(£ 2)d( 2 ,£lk1,l£) , if i £

Y i = (2.49)

-i, R (,2 ) - + J, k2 i2 + ggiR(-2)

Otherwise •

Fundamental Step (ii):

The elements of x are given by

1 if i £2Y12

xi
_- _ Otherwise
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Substituting the values of yi from (2.49) and using the notation

in iteration (1),

xi - -b(2,L2,i) , for i = 1,2,...,m • (2.50)

The index 2 signifies the fact that column set 2 is under

consideration.

In (2.50)

b(2,t2,i) [rl(2,12,i) + f(2,L2,i)] (2.51)
v(2,L2)

where

gi,R(L2)- d(2 ,t1'l1'i)g1,R(1
2),

if i - 1,2,...,m but 119, £2

rl(2,12,i) - -d(2, l1i")g61,R(12) , if i 2.1 (2.52)

0 , if i 12

-1, if i 2

f(2,L2,i) - (2.53)

i gjtjcj, 2 3'Otherwise
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and

v(2,12) gtR(2 - 2llLl + 1 . (2.54)

Fundamental Step (iii):

E is obtained by replacing column Z2 of I with x. The ele-

ments of E are given by

-b(2,k2,i) , if j = 12 and i - 1,2,. ..,m

ejij 1 , if j ,2,...,m,.but Z 2, (2.55)
and i j

o0 Otherwise

where b(2,12,i) is defined in (2.51).

Fundamental Step (iv):

G1:2 E G1

1l:2  1:2 1:1

Here G is the inverse of C ,which is similar to C

but also having a unity element in column £2 I c(2,2) and row

R(U2) - ir(K-1,2).

The elements of G are given by
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1:2 -m 1:1

Z. e * 9" for i~j 1 ,2,...,m.

Substituting the values of eiland g jgiven by (2.55) and

(2.46) respectively, and simplifying, for all J,

g gU,23 {b(2,1.2,i)), if 1 < i < m

but 0 El1, U.

1:2 -9911{ 2 1 1 )-b(,U 1 2 ,1,1)1 (2.56)
gi~j -g 2 j{ ( , 2 L ) , i

- ~ ~ ~ ~ ~ ~ ~ i i9 1,j{b2,2U (,1~l1)

g9, 2 ,j{b(2,12,12)I, if i - 1.2

where U. - 9c(2,l) and L.2 - Ic(2,2). Equation set (2.56) can be

rewritten as, for j - 12..M

P.c(2,2)

E n1c(,l 1 11 d(2,kti2,i) ,if i - c(2,1), kc(2,2)

1:2 -(2.57)
gijj

tc(2,2)
-i 9 11 0 2,ELt2,i), Otherwise

L-kc(2,l)
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where

-b(2,£2,£2) d(2,Ll,Ll,£2) , if i £2

d(2,kl,£2,i) = (2.58)

d(2,£l,il,i) - b(2,k2,i) d(2,Il,kl,£2), Otherwise

and

d(2,£2,£2,i) = b(2,22,i), if i = 1,2,...,m. (2.59)

Here, £1 < £2.

2.4.4.3 Inverse After the Final Iteration of Phase 1

By examining the expressions for the elements of the inverse

and the different quantities obtained after Iterations 1 and 2,

it is possible to develop expressions for these quantities after

the final iteration r'(K-l) in phase 1. Mathematical induction

will be utilized for this purpose with the following conjecture.

1:n

Conjecture 2.1: The elements of the inverse G , obtained after

the nth iteration (n < r'(K-l)) in phase 1, are given by, for

j =

70I-



E.(2n g d(2,Z,ln,i) ,if Ic(2,1) < i < ec(2,n)

=~ (~n2.60)

2c(2,n)
-i~ E.=9.9(, 1 d(2,k,9.n,i) ,Otherwise

where

O , if k. > 9.n and i = 1,2,...,

b(2,tn,i) , if k. = Ln and i = 1,2,...,

d(2,Z,Znji) =(2.61)

-b(2,9.n,fen) d(2,9.,Zn-1,Rn) , if k. < LU arnd i = n

d(2,Z9, Zn-l,i) - b(2,kn,i) d(2,Z,9.n-l, Lu), Otherwise

where

b(2,tn,i) = ( 12 [rl(2,2.n,i) + f(2,9.n,i)] ,(2.62)

where
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kn-i

9iR(Xn = E1gZR(kn) d(2,i.inl1,i),

if 1 < i <21U or In <i < m

rl(2,2.n,i) = ni(2.63)

E 99g2. R( qn)d(2 ,Z3Zn-l~i) ,if X1 < i < Zn

0, if i In

-1, if i In

f(2,tn,i) =(2.64)

i

E gijcj , Otherwise

and

v(2,kn) gtnR(In) - n g gk.,R(kg) d(2,2.,Zn-l,kn)} + 1 . (2.65)

In these expressions, Zn = c(2,n).

Now it will be shown that the expressions given in Conjecture

2.1 are true for the (n+1)s iteration if they are true for the

n thiteration.

Iteration__(n+i):

In iteration (n+l), the unity element located at row

1
2r(K-1,n+l) of column ic(2,n+l) of (I-P) is considered. So,
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here q is column kc(2,n+l) of (I-P)

Fundamental Step (i):

G 1:n

1 , if i - R(Ln+l)

qi = ci,n+, if i > In+l (2.66)

0 , Otherwise

Using (2.66) and (2.60), the elements of y are obtained as

in

E g gk,R(kn+l)d(2,Ltn,i), if il < i < in

Y, = (2.67)

-i 7.gR(n+l) 
d(2, 1, kn, i)

gi,R(kn+l) E g R( gijcjh+n+l'

9.- i j in+l ijRn1Otherwise

Fundamental Step (ii):

The elements of x are obtained from

73



1 ,if i -in+1T L' n+1

I ,+ Otherwise

Substituting the values of yi from (2.67) and using the quanti-

ties introduced earlier, the elements of x are given by

X= -b(2,Zn+l,i),

wher e

b(,k~li) I [rl(2,2.n+l,i) + f(2,2.n+1,i)] (2.68)

b(2,i~l~i) v(2,.En+l)

where

in

if 1 < i < ii
or Xn~l <i < M

in
rl(2,tn+1,i) = -E gkR(kn+l) d(2 ,ki9ifli) ,if kl < i < Xn+1 (2.69)

0, if i in+l
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-1, if i Inn+l

f(2,tn+1,i) -(2.70)

g i' 'z~ Otherwise

and

v(2,tn+l) g n= Ri~) 9, E lgt,~nl d(2,1,kn,ln+1))+1 . (2.71)

Fundamental Step (iii):

E is formed such that

-b(2,kn+1i) , if j - kn+1 and i ;- 1,2,...,

ej j = 1 ,if j -1,2,...,m but Z n+1 and i -j (2.72)

O0 Otherwise,

where b(2,kn+1,i) is given in (2.68).

Fundamental Step (iv):

G1: n+1 :
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Substituting the values of g1nand e from (2.60) and

(2.72), respectively, and rearranging the terms, the elements

of G In are given by, for j -1,2, ... M

9.c( 2 ,n+l)

E 9 t2i d(2kl)2.' ~ i if 2c(2,1) <i < 2.c(2,n+l)

1: n~l(2. 73)
gij

9.c(2,n+1)

where~~~ Lj ~(,)g . d(2,.,2n+l,i), Otherwise

0 ,if z. > tn+l and ± ,,.,

b(2,2.n+l,i) ,if 2k 2n+l and i 1,2,...,

d(2,2.,2n+l,i) (2.74)

-b(2,2.n+l,.rt+l) d(2,2.,2n,2.n+l) , if k. < 2kn+1

and i - 2.n+l

d(2,2.,2n,i) - b(2,2.n+l,i)d(2,,.n,2.n~l) , Otherwise.

Comparing equation sets (2.68) through (2.74) with the correspond-

ing sets given in Conjecture 2.1, it is clear that the conjecture

holds for the elements of the inverse after (n+l) St iteration,

if it is true for n thiteration. From the results obtained after
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iterations I and 2, it is obvious that the conjecture is true

if n - 1,2. Hence, by induction it is true for n - 1,2,...,F

where F - r'(K-1).

Now using Conjecture 2.1, the expressions for the elements

of the inverse G :F , obtained after all the iterations of phase

1, are developed. At this stage it is useful to introduce an-

other quanitty dl(k,k,i) which is given by

dl(k,Z,i) - d(k,Z,ZF,i) (2.75)

The elements of G1:F can be written as, for all j 1,2,...,m,

ic(2,F)
E -Zj dl(2,Z,i) , if tc(2,1) <i < ic(2,F)

Zffic (2, 1)

1:F
gI, (2.76)

£c(2,F)
S E dl(2,1,i) Otherwise

,j X-Ic(2,l)g£,J

where dl(2,1,i) is given by (2.75) and can be recursively found

using equation sets (2.61) through (2.65).

77

.& .



2.4.4.4 Inverse After All Iterations of Phase 2

1,F
In this phase, G *: , the inverse obtained in phase 1, is

modified to take into account the unity elements above the main

diagonal in the columns of column set 3. There are r'(K-2) num-

ber of iterations in this phase, one each for each column. In

each iteration all the four Fundamental Steps are carried out.

Instead of going through all iterations, it is possible to de-

rive the expressions for the elements of G2 , the final inverse

at the end of phase 2, by noting the following points.

(i) The same type of operations are performed in each

iteration of phase 2 as in the case of phase 1.

(ii) In deriving the expressions of the inverse in

each iteration of phase 1, the structure of the

inverse matrix obtained before is utilized to the

extent that gi,j = 0 if i < J.

(iii) The structure of the column _I is utilized in

each iteration. The pattern of the elements in

columns of column set 3 is similar to that of

column set 2. Only the position of the unity

element and the first non-zero element after

unity is different in each column, which is re-

flected in the expressions of the inverse ele-

ments.

Now based on these points and equation set (2.76), the ele-

ments of G2 :F can be written in terms of the elements of G1
:F
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as$ for j 12..M

E gtF) d1(3,AZi), if Xc(3,I) <i < Lc(3,F)

a: (2.77)

1:F (3,F) 1*
gij z dl(3,k,i) ,Otherwise

kk(3, 1)

where dl(3,2,,i) d(3,9LLF'i).

After substituting the values of g I.F and g -Ffor

Ic(3,l).< 9. < Zc(3,F) from (2.76) and rearranging the terms,

equation sc t (2.77) becomes, for all J,

Wc2,F) kc(3,F)
g E 9 g~i 4 dl(2,9.,i) - E dl(3,L',i)dl(2,i,4'))

k-.c(2,i) V-c(,'

2,c3,F)
E gZ3 .dl(3,9.,i), if 1 I i < Pc(2,1)

Z=Zc(3,l) ' ~ or Lc(3,F) < i < ms

Pkc(2,F) kc(3,F)

E ) 9jt' d(,, - E dl (3, V, i) dl(2,t,9 V)

- E 9%,jdl(3,9,i) ,if Ic(2,l) < £ <9,c(2,F)
9c (3,l1)

2:F - (2. 78)

tc(2,F) Zc(3,F)

£1c(2,l) V .- 9c(3,l)

-9c (3, F)

L-9.c3,l) (3F



In a similar way, the expressions for d(3,1kni), b(3,tn,i)

and other related quantities can be obtained on the basis of

equation sets (2.61) through (2.65). In these expressions in

stands for 9c(3,n). The expressions are

[ 0 , if 2I > in and i - 1,2,...,

b(3,in,i), if 9, = In and i - 1,2,. ..,mJ

d(3,1,1n,i) (279

-b(3,kn,tn) d(3,X.,in-l,9.n), if I. < In

and i = In

d(3,9.,2n-1,i) - b(3,2.n,i)d(3,t~n-l,tn)

Otherwise

where

b(3,tn,i) = 1 [rl(3,Rn,i) + f(3,R~n,i)] ,(2.80)
v(3,in)

where

1:F -1 1 :F

if 1 < i < w(3,1) or in <i <m.

rl(3,tn,i) = -l 1:F.,Ri d(3,i,kn-l,i), (2.81)
kizl

if ic(3,I) < i < In

0 , if i - in
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-1, if i-In

* f(,Ln,i) =(2.82)

*g 4 8 Otherwise
jtnn] and

v(3,tn) tnR(Zn) Z ~ g X:RFZd(3,,n.1,9n) 1+1. (2.83)

Zl:F

Substituting the value of g :Fin (2.81) through (2.83), the ex-

pressions become

Wc2,F)

- £ic(2 ,l)R(.)-

in-.

E 9 d(3,Ln-1,i), if 1 < i < kc(2,1)
I~kc3,I)iR(,n)or in < i m

kc(2,F)
rl(3,kn,i) z - Z 8R(in){dl(2 ,.ei) -(2.84)

1Ztc(2 ,1)

kn-i

Vtic(3,1)

tn-i

E 99R~n d(,kn-li),if ic(2,1) < i < c(3,1)

(Equation (2.84) continued on next page.)
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tc(2,) tnE d(3,,n1li)dl(2,t,E'))-

-Z'.tc(2,1)X c3I

kn-i
r gk R(l) d(3 k knfli), if kc(3,1) <i < in

X=Zc(3,l)

0, if i = i

-1, if i =in

f(3,kn,i) =(2.85)

E gic ,Jt Otherwise

and

kc(2,F)
v(3,t) = - ~ ~ 2 ,~~fl)dl( 2 ,i~tn)

Ztc(2,l)

tn-i
Z d(3,t2,tn-l,2.n)dl(2,t,V )} (2.86)

t'=2c(3,1)

QEn-l

zt~31 gkR(kn) d(3,kZnltn) + 1

2.4.4.5 Inverse After The Final Phase (K-i)

Instead of going through all the operations in all the

phases, the expressions for the final inverse elements are ob-
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tamned now using mathematical induction. First, a conjecture is

made as to the expressions for the inverse elements after k

phases and then it is shown to hold after (k+l) phases. In phase

k, the columns of column set (k+l) are taken into consideration.

Conjecture 2.2:

After phase k, (k -1,2,..., K-2), the elements of the in-

verse G : are given by, for j -19$..m

k+l tc(k+3-kl,F)
E E ~h(k+l~k+3-kl.L~i)l,

kl=2 2t'Lc(k+3-kl,1) t'

if Zc(2,l) <_ i < Lc(k+l,F)

k:F 
(.7g (.87

k+l 9tc(k+3-kl,F)

- E1 g~~+-l1 gh(k+l,k+3-kl,1,i))*

Otherwise

where

k+l kc(k',F)
D(k3,t,i) E E D(k',L',i)T(k3,k'L,L')1,

k'-k3+l k'-kc(k',l)

if k3 < k+l

h(k+l,k3,R.,i) =(2.88)

0 , Otherwise
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The quantity h(k+l,k3,kfi) stands for the coefficient of

~j(kc(k3~l) < X < 2,c(k3,F)) in the expression of the element

at row i of the inverse obtained after taking into consideration

the unity elements above the main diagonal in the columns of

column sets 2 through (k+l).

In (2.88), for k' < k+l,

dl(k',k',i) , if i < ic(k',F)

or i > X.c(k+l,F)

D~k',2,i) =(2.89)

0 , Otherwise

and

k'-l ft(k4,F)
T(k3,k',Z,Z') =dl(k3,k,2) - z { dl(k4,R,,)

k4-k3+l £t9.c(k4,l)
(2.90)

T(k3,k4,e,kP) }.

As seen earlier,

dlW', V, i) = d (k',R.', 9'F, i)

The expressions of the other related quantities are given in

the following equations. In these equations, kl can take any
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of the values l,2,...,k+l and In - kc(kl,n):

Mi 0, if I > In and i 1,,.,

b(kl,kn,i) , if I =In and i - 1,2,...,m

d(kl,X,In,i) =(2.91)

-b(kl,Xn,In)d(kl,I,kn-1,kn) if I < In

and i -In

Otherwise

where

(ii) b(kl,9In,i) 1~ln [rl(kl,tn,i) + f(kl,tn,i)I (2.92)

where

ki tc(kl+2-il,F)
(iii) gi,R(in)- E gi R(in) h(kltkl+Zil~thi))1

11=3 L-kc(kl+2-il,l)

kn-i

Z=ic(kl,l)

if 1 <1i< kc(2,1) or In < i< m

ki tc~kl+2-il,F)
rl(kl,tn,i) E -j RZn {lk~l2i~~)-

ilin3 kmtc(kl+2-il,1)

In-l

Iu.Ic(kl,1)

if Ic(2,l) < i In

0. if i - n
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IMml

where

(iv) h'(kl,k6,9,i) -D~k6,1,i)-

kl-1 2.c(k',F)
E E D(k',L',i) 'r(k6,k',9.,tl)l- (2.94)

k'-k6+l 2.'-gck',j)

zn-1

where T(k3,k',Z,9') is given by equation (2.90) and D(k6,R.,i)

is given by

(v) dl(k6,t,i) ,if i < 9,c(k.6,F)

or i > 9,n

D(k6,t~i) (2.95)

0 ,Otherwise

(vi) -1, if i - ri

f(kl,Zn~i) (2.96)

E g ,~ Otherwise
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(viii) v(kltn) - g n,R(In)

kl £c(kl+2-il,F)
E { . gt,R(in)h'(kl,kl+2-il,ttn))-

ii-3 £-£¢-(ki+2-ii,I)

(2.97)

in-i
, nd(kl,,n-l,n) + 1.

Now the expressions of the elements of the inverse after

phase (k+l) are derived assuming that the expressions given in

Conjecture 2.2 are true for phase k.

Phase k+l:

In phase (k+l), the columns of column set (k+2) are con-

sidered. Instead of going through all iterations of phase (k+l),

the method used to obtain the expressions in phase 2 given the

expressions in phase 1, can be utilized. The three arguments

given in phase 2 are general in nature which can be applied to

any phase.

k+l:F
Now, based on equation set (2.76), the elements of G

the inverse after phase (k+l), can be written in terms of the

elements of Gk :F as, for all J,
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tc(k+2,F) :
E gk: dl(k+2,i,i), ifLc(k+2,l) < i < Zc(k42,F)

XAc (k+2I .1)

kIF
8 i~j (2.98)

k:F kc(k+2,F) k:F
gi~j E gjz~jdl(k+2,k,i), Otherwise

where dl(k+2,k,i) =d(k+2,2.,kF,i).

Now the value of k: can be substituted in the preceding

equations and the resulting relations can be simplified. Because

of the lengthy procedure involved in the simplification process,

the details of simplification for the expressions in (2.98) when

1 < i < Zc(2,1) and ic(2,l) < i < kc(k+l,F) are given in Appendix

C. Details of simplifications for other ranges are not given as

the procedure is similar to the one given. Upon simplification

and rearranging the terms, equation set (2.98) becomes

r k+2 kc(k+4-kl,F)
r { E g 9Ijh(k+2,k+4-kl,I,i)),

kl'=2 k£ic(k+4-kl,l)

if 2.c(2,l) < i < 9Zc(k+2,F)

k+l F (2.99)

k+2 9c(k+4-kl,F)

gi~j -kl E2 L-ck+ k~) h(k+2,k+4-kl1ti)}.

Otherwise
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where

D~kL~) -k'-k3+1 tc(k',F)

ifk3 < k+2

h(k+2,k3,-,i) - (2.100)

0 ,Otherwise

where

dl(k3,k,i) ,if i < Ic(k3,F)

D~k3,t~i) or i > ic(k+2,F)(21 )

0 ,Otherwise

and

T(k3,k',t,k') -d1(k3,Rk,k')-

(2.102)

k4-k3+1 H.-kc(k4,1)

when k' -k+I2.
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The expressions for D(k3,t,i) for k3 < k+1 and T(k3,k',Z,1')

for k' < k+1 hold as per (2.89) and (2.90), respectively, in

Conjecture 2.2.

The expressions for the other related quantities can be ob-

tained in a similar way. First, the expressions for the different

quantities are written in terms of g based on the method given

in phase 2 and equations (2.79) through (2.83). In these expres-

sions, In stands for tc(k+2,n).

(i) 0 , if Z > in and i = 1,2,...,m

b(k+2,tn,i) , if I. In and i - 1,2,...,m

d(k+2,t,Ln,i) = (2.103)

-b(k+2,in,Xn)d(k+2,Z,Rn-l,tn), if 2 < In

and i - In

d(k+2,k,2n-l,i)-b(k+2,kn,i)d(k+2,,n-l,n),

Otherwise

where

(ii) b(k+2,,2n,i) ,i) + f(k+2,tn,i)) , (2.104)

where
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tn-ik:F 9n1k:F
(ii)gi,R(2n) E'£ g,R( Zn) d(k+2, 1, n-l i),

if 1 < i < Lc(k+2,1)

or In <i <m

tn-1 kF
rl(k+2,kn,i) - ' gtR(in)d(k+2 ,1,kn-l,), (2.105)

if tc(k+2,1) < i < In

0, if i =n

(iv) -1, if i - In

f(k+2,kn,i) = (2.106)

k:F
E g i,j , Otherwise

and

kn-i
(v) v(k+2,tn) gk: E , dn-l,-n)}+l

t-il (2.107)

Theexpessonsfork:Fca

The expressions for g k:Fgiven in (2.87) can be substituted

in the expressions (2.105) through (2.107) and simplified. The

same procedure is followed in the derivation of the elements

k+l:Fa
g, and so th details are omitted here. Upon reduction, the

expressions become
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k+2 tc(k+4-il,F)

11-3 L-XRc(k+4-il,l)

9n-1

Z=Zc(k+2,1)

if 1 < i < c(2,1) or kn < £ < m

k+2 Z.c(k+4-il,F)
rl(k+2,tn,i) E I E gk R(kn) h(k+2 ,k+4 -il3t~i) (2.108)

kLtc(k+2 ,1)

if kc(2.1) < i < in

0, if i n,

where

k+1 kc(k',F)
h'(k+2,k6,t,i) D(k6,L,i) - E E D(k',X',i)T(k6,k',L,I')

k'-k6+1 Z'-Zc(k',1)

kc(k+2,F)
- d(k+2,k',in-1,i)T(k6,k+2,2,i,'), (2.109)

k'1Zc(k+2,1)

where d(k+2,9',Zn-1,i) is given by (2.103). Expressions for

D(k6,k,i) are given by (2.101) when k6 - k+2 and by (2.89) when

k6 < k+1. Expressions for T(k6,k', ,Vi) are given by (2.102)

when k' -k+2 and by (2.90) when k' < k+1.
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(iv) -1 , if i in

f(k+2,kn,i) - (2.110)

i
E g i,jcj,kn Otherwise

and

(v) v(k+2,tn) = g n,R(kn)

k+2 tc(k+4-il,F)
E I E giR(kn) h'(k+2,k+4-il,ktn)} - (2.111)

ii=3 k=£c(k+4-ii,i)

9,n-1
E gtRtn)d(k+2,Z,Zn-l,Ln) +1.

£=Zc(k+2,1)i)R(tn)

Comparison of the expressions obtained after phase (k+l)

with the corresponding ones in Conjecture 2.2 reveals that the

expressions given in the Conjecture hold for k = k+l. An exami-

nation of the expressions obtained after phases 1 and 2 makes it

clear that the expressions given in Conjecture 2.2 hold for

k = 1,2. By mathematical induction, then, Conjecture 2.2 holds

for k - 1,2,...,(K-l), where (K-l) is the total number of phases.

It is now possible to write the expressions of the elements

of final inverse G(Kl)F, which is obtained after modifying the
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original inverse G of the lower triangular part of (I-P) ,taking

into consideration all the unity elements above the main diagonal

1 K-1:Fof (I-P) .The elements of G are given by, for j -1,2p,... m

K tc(K+2-il,F)

-il-2 Zk(+-ll

if kc(2,l) < i < m

9(K-1) :F (2.112)

K RZc(K+2-il,F)

~ij-il 2 k-k~c(K+2il,l)

Otherwise

where, for kl =2,3,.. .,K,

K Rkc(k',F)
(i) h(K,kl,Z,i) =D(kl,t,i) E E D(k',2',i)T(kl,k',,V,)I

(2.113)

={ kl, , if i < 2c(kl,F)

0,Otherwise

(iii) dl(kl,R.,i) =d(kl,k,ZF,i) (2.115)

The values of all other related quantities are given as

per expressions (2.90) through (2.97) in Conjecture 2.2 for
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k1 - 2,3,... ,K.

2.5 CALCULATION OF STEADY STATE PROBABILITIES

In this section the elements of the steady state departure

probability vector A are calculated using the equations (2.20) and

(2.18) and the expressions of the elements of the inverse of (I-P)1

obtained in the previous section. Rewriting equation (2.20) as

(A ,A2,...Am) = Am+ 1' 2 (Z z ..,z m)G(K-1):F

each element of the row vector on the left hand side can be

expressed as

m g(K-1):F
A A m+{ E Z g , for j = 1,2,...,m. (2.116)

j m~li=l 1~

After substituting the values of g(K-l):F from (2.112) and re-

arranging the terms, equation (2.116) can be written as

A A - S 2 for j - 1,2,...,m, (2.117)
j m+l 1

where

1 c(2,l)-i
SZg , for j 1,2,...,m (2.118)
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and
ad2 K c(K+2-il,F) mK c(+-lFg k,j {iZiZ ih(Kfi ,K+2-il,k,i)}]

il2 2.-Zc(K+2-il,1) i=1
(2.119)

for j - 1,2,...,m

The expressions of S1 and S are now modified to reduce

them as functions of the quantities corresponding only to the

rows Zc(2,1) to m of (I-P)I . The number of rows from ic(2,1)

to m is less compared to the remaining rows in most cases, and

this modification reduces the computer storage and the amount

of computation time in such cases.

2.5.1 Calculation of S.
3

It is necessary at this stage to consider a lower triangu-

lar matrix L of size (m+l)x(m+l) whose elements are given by

ci, for i 1,2,...,m and j 1,2,...,m

-Z., for i = m+l and j = 1,2,...,m

i (2.120)

1, for i = m-l and j m+l

0 , Otherwise
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where the c are the elements of the lower triangular part

of (I-P) and the -Z 's are the last m elements of the (rr+l)st

row of (I-P).

Because of the nature of the relationship between L and
1 1

(I-P) matrices, the values of gi,j's related to (I-P) and L

are the same for the corresponding values of ij 1,2,...,m.

Therefore, using (2.33), the following relation can be estab-

lished with respect to the elements of L:

m
-m+lj E km+l,igi,j for j 1,2,...,m (2.121)

Substituting the value of Z m+li from (2.120) into (2.121),

m
= M= jiEZ igi,j . for j = 1,2,...,mgiforj

+c(2,1)-i m
= E Zigi,j + E Zig~

i i i=£c(2,1) ii

+ m

sj i-kc(2,1)Zgj

Therefore

sj =~ ~ g,,,+,1,Z

(2.122)

for j 1,2,...,m
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In (2.122) the values of gm+l,j and giJ can be obtained

using the recursive relations given in (2.32).

2.5.2 Calculation of S 
2

Equation (2.119) can be written as

2 K tc(K+2-il,F)S E [ E g£,jH(K+2-ili)]
s 1i i12 -Lc(K+2-il,l)

(2.123)

for j 1,2,...,m,

where

m
H(K+2-il,k) E Z h(K,K+2-il,k,i) . (2.124)

i-i-.

If (K+2-il) is written as kl for the sake of simplicity, then

(2.124) becomes

m
H(kl,k) - Z Zih(K,klL,i).

i-l

Substituting the value of h(K,kl,Z,i) from (2.113), H(klt) is

given by
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H(kl,t) Z Z [D~k1,t~i)-

K 2Ic(k',F)

k'-k1+1 I'u9.c(k',1)

(2.125)

-E z D(k1li,i)-

K 9.c(kt,F) m

In (2.125)

in tc(kl,F) in

E z D(kl2 i) = E Z D(kl~ii) + E Z D(kl,tLi)
i-i =]- i=RZc(kl,F)+1

kc(kl,F)
E z Z dl(kli,i),

i-i

because of (2.114). Similarly,

in tc(k',F)
Z Z iD(k',ki,i) = E Z idl(k',1',i)
i-i i-l

Now it is necessary to introduce a new quantity Y(kl,i,ln)

which is defined as
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tn

Y(kl,,tn) - n Zid(kl,kn,i) (2.126)
i-i Zdk~~ni

Then, because dl(k',L',i) - d(k',k',k'F,i) as per (2.115), equation

(2.125) can be rewritten as

K ec(k',F)
H(kl,Z) = Y(kl,Z,LF) - Z { E T(kl,k',k,k')

k'=kl+1 '-kc(k',l)

(2.127)

Y(k',i',9'F))

where T(kl,k',%,L') is given by (2.90), F = c(kl,F) and 'F =

tc(k',F).

In (2.127) the only unknown quantities are the newly intro-

duced Y(.,.,.)'s, which were defined in (2.126). Substituting

the values of d(kl,k,zn,i) from (2.91) into (2.126) and simplify-

ing, the values of Y(kl,t,kn) can be expressed as

0 , if Z > kn

in
Y(kl,ttn) E i Zib(kl,'ni) , if k = in (2.128)

1=1

Y(kl,,n-1) - d(kl,k,in-l,in)Y(kl,in,jn),

otherwise.
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The expression set (2.128) forms a set of recursive relations.

For any value of kl, In can be varied from £I to IF. For each

value of In, 2 can be varied starting from In and ending up with

1. When I - In, the value of Y(kl,tn,tn) is obtained and then

the values of Y(kl,k,kn) for Z1 < £ < in are determined recur-

sively using (2.128). So the next step now is to calculate

Y(kl,9n,In).

Using the value of b(kl,tn,i) from (2.92) in (2.128),

Y(kl,kn,kn) is given by

Y(kl,tn,vn) Et 1 (kl,tn) + t 2(kl,Zn)] (2.129)v(kl,kn)

where

1 in
t (klin) E Z irl(kl,tn,i) (2.130)

i-l

and

2 In
t (kl,tn) = Z Zif(kl,kn,i) . (2.131)

Now the expressions (2.130) and (2.131) are to be modified so

that t1(kl,tn) and t2(kl,kn) can be expressed as functions of

the quantities related to the rows from kc(2,l) to m only.

First t (kl,zn) is considered. Substituting the value of

r(kl,kn,i) from (2.93) and rearranging the summations, (2.130)
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can be rewritten as

t1(k n Zc(21l)-l

i=l

tc(kl,n-l) Xn-1
E g9R.n { E Z d(kl,i,tn-1,i)} - (2.132)

JZ-kc (kl,1)Z RZn i-i

ki tc(ki+2-il,F) 9n-1
Z~~~ Z Z,(n Z h'(kl,kl+2-il, t,i)1

i1=3 £.skc(kl+2-il,1) i-i

It can be seen from (2.132) that t 1(kl,tn) can be expressed as a

function of the quantities related to the rows from kc(2,1) to

m only, if the expressions

Ec(Z,l)-1 9n-1
(a) z ZgiR(In) ' (b) E Z id(kl,Z,Xn-1,i) , and

1=1 i~1

Zn-i
(c) E Z h'(kl,kl+2-il,tZi) of (2.132) are modified accordingly.

i=1

kc(2,1)-1
(i) The expression E Z 1gi,(ifl) is similar to

i=l

the expression (2.118) of S1with j - R(in). So,

based on the final expression (2.122) of Si.

tc(2,1)-l m
ri giRt-i mI,~n E ZigiR( #a) (2.133)
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(ii) As per (2.132)

in-i
E Z d (kl, Z, 9n-1,i1) Y Y(kl, i, 2n-1) .(2.134)

i=1

(iii) Using the values of h'(kl,kl+2-il,i,i) from (2.94)

and rearranging the summations,

Zn-i Xn-i
Z Z ih'(-l,kl+2-il,X,i) = E Z iD(kl+2-il,t,i)

1 1=1

in-i kn-i
E T(kl+2-i1,kl,Z,i'){ E Z id(kl,t',Zn-1,i)} (2.135)

kl-l Zc(k',F) in-I
E E T(kl+2-il,k',k,Z'){ E Z.D(k",Z',i)1].

k'-k1-$2-il+l Z'=kc(k',l) 1

Because of (2.95)

in-i kc(kl+2-il,F)
Z Z.D(kl+2-il,i,i) E Z. d(kl+2-il,Z, U, i) ,

where iF = c(kl+2-il,F).

As per (2.126),

ic (kl+2-il,F)
E Z d (kl+2-il,i,,QF, i) Y Y(kl+2-il,iZ, 9F)

1=1 i

and so
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Similarly

Zn-1

i=l

where V1F = c(k',F).

Now, based on the modifications in (i), (ii), and (iii),

(2.132) can be rewritten as

1 In
t kZ)= ~lRk - i g ,R(kn)

Zc(kl,n-l)

E ~~l1 g , R(n) Y(kl~k~knl1)

ki Zc(kl+2-il,F)
f gX Z, R(Zn){Y(kl+2-i1,ZZF) (2.136)

Zn-i
- T(kl+2-il,k1,9Z,ki)Y(kl,k'jZn-l)

kl-l kc(k',F)

- 'k+2i~ C Zk+2ilk'Z,')kkZZF))

Second, the expression for t 2(kl,kn) in (2.131) is modified.

Substituting the values of f(kl,gn,i) from (2.96) and simplifying,
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equation (2.131) can be written as

t 2(kl,Zn) = -Z n  (2.137)

Now using (2.136) and (2.137), (2.129) can be written as

1 m
Y(kl,kn,kn) v(klkn) gm+l,R(n) - E ZgR(kn)

Zc(kl,n-i)
zZn =£kI~i g£,R(£n) Y(kl,k,kn-l)

- iic(kl,1)

kl kc(kl+2-il,F)
I g£Y(kl+2-il,Z,ZF) (2.138)
il=3 k=Zc(kl+2-il,) I R(kn)

ic(kl,n-l)
E T(kl+2-il,kl,9,i')Y(kl,9',kn-1)

Z'=Zc(kl,1)

kl-l £c(k',F)
- ( I ~ l2i~'££)~'£,')})

k'=kl+2-il+l £'=£c(k',i)

where iF = £c(kl+2-il,F), 'F = kc(k',F), and the values of

v(kl,tn) and T( .... ,.) can be obtained from (2.97) and (2.90),

respectively.

Now using (2.138) and the recursive relation set (2.128),

the values of Y(.,.,.) can be obtained. These, along with
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T(.,.,.,.)'s from (2.90), give the values of H(.,.) in (2.127).

Then (2.123) can be used to obtain S2
JS

2.5.3 Final Expressions for the Steady State Departure Probabilities

1 ad2
The values of S and S can be calculated using the expres-

sions obtained in subsections 2.5.1 and 2.5.2 and then these

can be substituted in (2.117) to obtain the value of the steady

state departure probability, A1 , (j - 1,2,...,m), in terms of

A m+. Then the normalizing condition (2.18) can be used to ob-

tain the value of Ai, i = 1,2,...,m+l.
1 nd2 sprtl n

Alternately, instead of computing S1 and S separately and
1 and 

2
using these values in (2.117), the expressions of S S n

(2.122) and (2.123), respectively, can be substituted in (2.117).

Then the combined expression can be used for the computation of

A. In this way, A1 can be written as

K tc(K+2-il,F)
A - Am+l[gm+l j - { g 1 (ZE + H(k+2-il,t))}]. (2.139)ii=2 t=tc(K+2-iI,I) g '

Using the normalizing condition,

m+l
EA -1

j-1 
j

given in (2.18), the value of Am+1 can be obtained from
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m
Am+, = [I + Z W]i (2.140)J=l

where

K kc(K+2-il,F)

W gm+l,j - { E g£, (Z, + H(K+2-il,Z))1,
il 2 9p-kc (K+2-il, i)

(2.141)

for j - 1,2,...,m.

In (2.141), H(K+2-il,t) is calculated from (2.127), (2.128), and

(2.138). The values of A are now given by, for j 1,2,...,m,

Aj = Am+lW (2.142)

2.6 SUMMARY OF THE ALGORITHMS

The solution development of the algorithms was explained in

sections 2.2 through 2.5. The expressions of the required quanti-

ties were also derived. In this section the solution procedure

of the algorithms is summarized in a sequence necessary to com-

pute the mean values of the system performance measures.

The sequence of the algorithms for implementation is given

in Figure (2.5). Now each algorithm in this sequence is described

in steps, organized in a manner suitable for adaption as a computer

code in the following subsections.
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INPUT

SYSTEM PARAMETERS Nixi, Pil (i - 1,2,...,K).

ALGORITHM FOR

1
GENERATING STATES OF (I-P)I . (SECTION 2.4.2)tI

ALGORITHM FOR GENERATING

1
THE ELEMENTS OF P AND (I-P) . (SECTION 2.3).

t1
ALGORITHM FOR INVERTING (I-P) AND

CALCULATING STATIONARY PROBABILITIES.
(SECTIONS 2.4.3, 2.4.4, AND 2.5)

ALGORITHM FOR OBTAINING

(B iPs and p 's,(i - 1,2,...,K).(SECTION 2.2).t
CALCULATION OF SYSTEM PERFORMANCE MEASURES

q,1 L it Wi t Lqi s, (i-1,2,...,K). (SECTION 2.2)

SEQUENCE OF THE ALGORITHMS

FIGURE 2.5
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2.6.1 Algorithm for Generating the States of (I-P)1

The details of the procedure of this algorithm which were

discussed in section 2.4.2 are now combined and explained in

the following steps.

A. Row States: (Numbered from the top)

Step 1: (Initialization). Set i - 1, kl - 1, il - 1,

U = K, and Z2 - K-1. Set the ordered row

sets 1 through K empty. Set the first row

state equal to X = (N 1*N2 ' '''NK-l'NK- 1).

Set J- NZ for I - 1,2,...,K-1 and JK - N-l.

Add the row state X as the first member of
-n

the ordered row set 1. Set il - il + 1 and

ii + 1.

Step 2: If 0, set J11 J~l-1 and go to Step 4.

Otherwise go to Step 3.

Step 3: Set j Z 1  Nti and £1 - l-l. Go to Step 2.

Step 4: Set the ith row state,

ixin = (JlJ2,...,JK).

th eeeto
If either k2 - 0 or the Z2 element of

Xi
-n i  N2' go to Step 5. Otherwise go to

Step 6.
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Step 5: Add row state Xi as the il t h member of the
K

ordered row set kl. If i = { T (Nk+1)}-l,
k=l

go to Step 7. Otherwise set il = i1+l,

i = i+l, and £I = K. Go to Step 2.

Step 6: Set kl = kl+l and il = 1. Add row state X
i

-n

as the ilth member of the ordered row set kl.

Set Z2 = Z2-1, il = il+l, i = i+l, and ki = K.

Go to Step 2.

Step 7: Stop.

B. Column States: (Numbered from left)

Step 1: (Initialization). Set v = 2, kl = 1, and vl = 1.

Set ordered column sets 1 through K empty.

th
Step 2: Set the v member of row set (K-kl+l) equal to

the vlth member of the ordered column set kl.

If v is equal to the number of rows in

row set (K-kl+l), then go to Step 3. Other-

wise, go to Step 4.

Step 3: If k1 = K, go to Step 5. Otherwise set v = 1,

kl = kl+l, and vl = 1. Go to Step 2.

Step 4: Set v = v+l, and v1 = vl+l. Go to Step 2.

Step 5: Stop.

After these steps, there are (m+l) number of row states and
K

m number of column states, where m is given by { T (N +1)-2}.
=I

The m column states and the first m row states form the states
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of (I-P)1 matrix. The (m+l) st row state, i.e., ? 1 -ofn

is required for calculating the elements of the row vector Z and

of the matrix L defined in (2.120).

2.6.2 Algorithm for the Calculation of Steady State Probabilities

As the expressions for the elements of the inverse of (I-P)
1

were used to obtain explicit expressions for the steady state de-

parture probabilities, the algorithms for inversion of (I-P) 1 and

for the calculation of the steady state probabilities can be com-

bined together for the purpose of implementation. The recursive

expressions for calculating the inverse elements do not require

all the elements of the transition probability matrix P at one

time. The gij's are calculated as and when the elements of P

are generated. Therefore, for the sake of implementation, the

algorithm for generating the elements of P can also be combined

with the algorithms for inversion of (I-P) and for the calcula-

tion of steady state departure probabilities.

Step 1: Consider the matrix L, whose elements are given

by (2.120).

Decrease j by 1 from m+l until it is equal

to 1. For each value of j increase i by 1 from

j to m+l. For each value of the pair (ij)

calculate the values of the elements Pi,j's cor-

responding to the row and column states, using

the formulae given in section 2.3, and i 's
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using (2.120). Using the recursive relations (2.32), cal-

culate g 'j s one by one recursively, with I i -,ci*

Store the values of

Mi gi' Is for kc (2,l1) <. i < m+l and 1 < j <_in+l

(ii) k 'j s for i = 1,2,...,m and j = i

(iii) k i''s as cj i's for kc(2,l) < i~j <S m, and

(iv) k 'S as -Zi s for i = m+l and 1 < J <in.

Step 2: Set kl = 2.

Step 3: Increase kn by 1 from kc(kl,l) to kc(kl,F). For

each value of in, (i) increase i by 1 from in to

m, and (ii) increase k by 1 from tc(kl,lj' to in.

For each value of the pair (REn,i) calculate

b(kl,PZn,i) using equations (2.92) through (2.97).

For each value of (t,tn,i) calculate d(kl,i,in,i)

using (2.91).

* Store the values of

(i) d(kl,Z,tn,i) for Zn < i < kc(kl,F),

kc(kl,l) < n < kc(kl,F) and kc(kl,l) < k < Zn,

and

(ii) dl(kl,t,i) which are d(kl,Z,ZF,i), (kF-kc(kl,F)),

for kc(kl,l) < i < mn, and Zc(kl,l) < z < kc(kl,F).

If kl - 2, go to Step 5. Otherwise go to Step 4.

Step 4: Increase k' in increments of 1 from 2 to kl-l. For

each value of k', increase k by 1 from kc(Ikl,l) to

kc(kl,F) and V' by I from tc(k',l) to Zc(k',F). For

each value of (k',k',k) calculate T(k',kl,Z',t) using
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(2.90). Store all values of T(k',kl,k',L).

Step 5: Increase In by 1 from kc(kl,l) to Ic(kl,F). For

each value of in, calculate Y(kl,tn,kn) using (2.138).

For each value of In > tc(kl,l), decrease Z by 1 from

kn-i to kc(kl,l), and for each value of (X,kn), cal-

culate Y(kl,t,kn) using (2.128).

Store the values of Y(kl,L,LF) for tc(kl,l)

2 < tc(kl,F) where IF = tc(kl,F).

Step 6: Set kl = kl+l. If kl < K, go to Step 3. Otherwise

go to Step 7.

Step 7: Increase k2 by 1 from 2 to K. For each value of k2,

increase I by 1 from Zc(k2,l) to kc(k2,F). For each

value of (k2,Z), calculate H(k22) using (2.127).

Store all values of H(k2,i).

Step 8: Increase j by 1 from 1 to m and for each value of j

calculate W, using (2.141). Store all values of W

Step 9: Calculate Am+1 using (2.140).

Step 10: Calculate the values of Aj, J 1,2,...,m using (2.142).

2.6.3 Algorithm for Calculating E(Bi)'s and i'a

The values of the E(B )'s, i = 12,...,K, are calculated using

(2.15). After obtaining the value of E(I) from (2.10), Pi's,

i = 1,2,...,K, are calculated using (2.9). These calculations are

summarized in this section.

113

- --- ~----M -



For computational convenience, equation (2.15) can be re-

written as

E(Bi) - 1/P[PROD(i) E(I) + A m+SUM(i)] (2.143)

where

PROD(i) = Ni i (2.144)

K
E(I) = E Z PROD(i)]-  (2.145)

i=l

as per (2.10) and (2.144), and

Ni K Nz
SUM(i) i ( Z { Z A(v)})] (2.146)

vi=l Z=i+l V.ZO

such that v. 0 for all j < i.

As noted in section 2.4.2.3, Am+, corresponds to the state

(0,0,...,0). Among the quantities required to calculate E(Bi)

in (2.143), SUM(i) is the only one which involves the steady state

departure probabilities. SUM(i) can be defined as the probability

that, under steady state, the service time is that of a class i

customer immediately after a departure. Because of the way in

which the row states are arranged in (1-P) , SUM(1) is the sum of

the steady state departure probabilities corresponding to the
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K 1

first N { TI (N+1)}-irow states of (1-P) , SUM(2) is the sum of
Z=2 K

those probabilities corresponding to the next N 2 (Nk+1)} row

states and so on with SUM(K) being the sum of the steady state

departure probabilities corresponding to the last NK row states
1Ki

of (I-P)

Now the algorithm can be summarized in the following steps.

Step 1: Increase i by 1 from 1 to K and calculate PROD(i)'s

using (2.144) for each value of i. Calculate E(I)

using (2.145).

Step 2: Set i = 1, j = 1, and J2 = NI{ 1 1(Nk+l)}-l. Go

Z= 2
to Step 3.

Step 3: Calculate SUM(i) = E A .J Set i = i+l and J = j2+1
"

J=Jl

If i < K, go to Step 4. If i > K, go to Step 5.
K

Step 4: Set j2 = j2 + Ni{ R (N Z+l)1. Go to Step 3.
t=i+l

Step 5: For i = 1,2,...,K, obtain the values of E(B.) using

(2.143) and then the values of Pi using (2.9).

Step 6: Stop.

Using the values of the pi's obtained, the mean values of

the system performance measures, W , Li, Wi, Lqi , and P can be

calculated using equations (2.3) through (2.6).
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2.7 VERIFICATION AND COMPUTATIONAL ASPECTS OF THE ALGORITHMS

2.7.1 Verification

The algorithms developed in this research were verified using

simulation. The algorithms were coded in Fortran language and run

on IBM 370/155 system to obtain the required output measures. A

set of test cases were chosen with different values of the input

parameters, K, Ni, vi' Xi' (i = 1,2,...,K), and exponential service

times for the purpose of verification. The simulation was coded in

the GPSS/360 language and run on the IBM 370/155 system. Point

estimates and their 95% confidence intervals were obtained for

W using the method of batch means [SARG 791 with 5 batches. The

results of both the algorithms and simulation for different test

cases are given in Table 2.1. It can be seen that the results

agree extremely well, thereby verifying the algorithms. For the

purpose of gaining insight into the computational aspects of the

algorithms, some other test cases were also run and the results

are given in Table 2.2. These are discussed in the next subsec-

tion.

2.7.2 Computational Aspects

On the whole, the algorithms behave reasonably well and are

efficient. This is especially true with respect to those algo-

rithms which invert the (I-P) 1 matrix and calculate the steady
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SIMULATION

CLSS N x MEAN 95% C.I. ALGORITHMS
i

3 1.0 i 2.0 0.6544 0.6419 to 0.6669 0.6593

2 3 1.5 2.5 3.1695 3.0949 to 3.2441 3.1588
3 2 3.0 4.0 23.6628 21.2053 to 26.1203 23.7393

t I
1 5 0.5 112.0 0.0742 0.0708 to 0.0777 0.075

2 5 0.6 i0.0 0.1167 0.1098 to 0.1236 0.1176
3 5 0.7 11.0 0.2226 0.2056 to 0.2396 0.23085 ±1 .. 0to0..0

1 7 0.1 5.0 0.0882 0.0813 to 0.0951 0.0895

2 7 0.4 10.0 0.1297 0.1234 to 0.1360 0.1317

3 7 0.5 10.0 0.2490 0.2345 to 0.2635 0.2592

1 15 0.1 2.0 1.5052 1.4198 to 1.5906 1.5091

2 15 0.06 1.0 22.2951 20.4733 to 24.1169 22.4878

1 1 0.5 5.0 0.1871 0.1707 to 0.2035 0.1976

2 2 0.6 7.2 U. /.271 0.2197 to 0.2545 0.2418
3 2 0.4 2.4 0.2737 0.2515 to 0.2959 0.2794

4 2 0.45 3.6 0.4693 0.4468 to 0.4918 0.4848
5 2 0.30 6.0 0.7818 0.7431 to 0.8205 1 0.8134

RESULTS OF VERIFICATION

TABLE 2.1
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CLASS N t xt W
(i) Ii

1 2 0.1 1.0 0.6625

2 1 0.2 0.5 0.2426

1 5 0.3 2.0 0.9102

2 3 0.2 1.0 2.4383

1 10 0.8 6.0 0.4840

2 10 1.0 10.0 7.0620

1 25 0.1 2.0 3.0332

2 25 0.06 1.0 309.7898

1 30 0.3 8.0 0.6044

2 1 0.1 15.0 4.1039

1 50 0.1 8.0 0.1734

2 1 0.08 15.0 0.4140

1 5 0.5 12.0 0.0750

2 5 0.6 10.0 0.1176

3 5 0.7 11.0 0.2308

1 4 0.20 3.0 0.3031

2 4 0.30 2.5 0.5137

3 20 0.05 5.0 1.6556

RESULTS OF W USING THE ALGORITHMS

TABLE 2.2
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state departure probabilities. This is because these algorithms

were developed taking into consideration the special structure

of the matrix. To illustrate this, the number of additions and

subtractions and the number of multiplications and divisions

required by the algorithms, denoted as Al and A2 respectively,

and by the Gaussian elimination method [HADL 61), denoted as GI

and G2 respectively, to calculate the stationary departure prob-

abilities are compared in Table 2.3 for certain cases. It can

be seen that, in general, the number of operations required by

the algorithms is less than that required by the Gaussian elimi-

nation method.

The number of operations required by the algorithms depends

1on the number of classes, the number of states of (I-P) , and

the number of unity elements above the main diagonal of (I-P)1 .

The number of operations required by the algorithms increases

as the number of unity elements increases. Therefore, the re-

duction in the number of operations required by the algorithms

in comparison with the Gaussian method is more in the cases where

the ratio of U, the number of unity elements above the main di-

agonal, to m, the total number of states in the matrix (I-P)1

is low and less in the cases where this ratio is high. This is

illustrated in Figures 2.6 and 2.7 where the ratios of the num-

ber of additions and subtractions and the number of multiplica-

tions and divisions, respectively, required by the algorithms

to the corresponding numbers required by the Gaussian elimina-
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tion method, that is, Al/Gi and A2/G2, are plotted against the

ratio of U, the number of unity elements above the main diagonal

to m, the number of states of (I-P) matrix for some different

values of m. The maximum possible value of the ratio U/m is

0.5. Even at this ratio, the reduction in the number of opera-

tions required by the algorithms, as compared to the Gaussian

elimination method, is significant. It is also observed that

for the same value of K, the number of classes, and the same

value of the ratio U/m, the reduction increases as m increases.

Also, in addition to this reduction in the number of operations,

the storage requirement of the algorithms is always less than

that required by the Gaussian elimination method, as the whole

(I-P)I matrix need not be stored for the algorithms.

When the number of states becomes large, i.e., greater than

or equal to 250, some computational difficulties were experienced

with respect to the generation of the elements of the transition

probability matrix P. The main problem is due to the floating-

point arithmetic errors in computing the elements of P as per

the combinatorial equations obtained in Appendix A. This prob-

lem was minimized by using double precision arithmetic and log-

arithmic operations in the cases run. In the case of exponential

and hyper-exponential service time distributions, this problem

can be further reduced by replacing the summation of the largest

range with a single product term. It is based on the following
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combinatorial relation [KNUT 68],

z h](h+v)= (2.147)
h=O V !

Another problem is the amount of computational time required

to calculate the elements of the transition probability matrix, P.

Using a numerical method to evaluate the integrals necessary in

the calculation of these elements may reduce such problems. Fur-

ther work on this problem is desirable.

When the state space becomes large the storage requirement

also increases, especially for the algorithms which invert the

(I-P)1 matrix and calculate the steady state departure probabili-

ties. This can be handled by using direct access auxiliary stor-

age devices such as discs or drums. Care should be taken, how-

ever, to modify the program such that the input/output time does

not increase significantly.
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CHAPTER 3

EXTENSIONS AND CONCLUSIONS

3.1 INTRODUCTION

In this chapter we first discuss the extension of the al-

gorithms for obtaining the marginal and joint time average prob-

abilities of finding a certain number of customers of different

classes at the facility. Then the possibility of using these

algorithms to cover mixed class models with infinite capacity

source for some classes and finite capacity sources for the other

classes is discussed. Finally conclusions and suggestions for

future research are given.

3.2 MARGINAL AND JOINT TIME AVERAGE PROBABILITIES

This extension is based on the application of Level Crossing

Analysis [SHAN 80] to a special case of discrete state processes

known as piecewise Markov processes [KUCZ 73]. The required

equations are derived and then modified to suit implementations

as algorithms in the following subsections.

3.2.1 Marginal Time Average Probabilities

The aim here is to obtain the values of qi(ni) , for i - 12,

..,K, and ni = 0,l,2 ,...,Ni, which are the marginal time average
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probabilities of finding ni customers of class i at the facility.

In order to understand the basis of the approach used to find

these, it is necessary to consider the sample path of class i

customers which giveq the number of class i customers at the

facility at any time. It is shown in Figure 3.1.

NUMBER OF 1
CLASS i
CUSTOMERS

ni

TIME

SAMPLE PATH

FIGURE 3.1

An arrival of a class i customer at the service facility is

represented by an upward jump and a departure of a class i cus-

tomer from the service facility after completion of service by

a downward jump. A level ni, ni < Ni, is considered in the sample

path and the state space is divided into 2 mutually exclusive sets.

Set 1 consists of those states, less than or equal to n., and
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set 2 consists of those states greater than or equal to (ni+l).

Then, as per the Level Crossing Analysis [SHAN 80], rd(ni),

which denotes the rate of downcrossings from set 2 into set 1,

is equal to ru(ni), the rate of upcrossings from set 1 into set

2. That is,

rd(ni) - ru(ni) (3.1)

As the arrival rate of class i customers when there are ni

number of customers of class i at the facility is equal to

(Ni-ni)Xi, and because there are only single arrivals, ru(ni) is

given by

r u(n i ) = q (ni)(Ni-ni)X,

(3.2)

for i = 1,2,...,K and ni = 0,1,2,...,Ni-.

Let 1 1(ni) represent the steady state probability that a

departing i class customer leaves behind ni customers of class

i at the service facility, (i = 1,2,...,K; nj 0,1,2,...,Ni-1 ) .

Then, as there are only single departures, rd(ni) is given by

rd (ni) - (n i)Pi i, for i 1,2,...,K andi iii(3.3)

n i  0,1,2,...,Ni-1,
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where p it gives the output rate of class i customers. From (3.1)

to (3.3), the marginal time average probability of finding ni

customers of class i at the facility can be obtained as

qi n i) (ni)Pi i
= (Nini)Ai  for i = 1,2,...,K and

(3.4)

nI M 0,1,2,...,N -l.

q i(Ni) can be calculated from

i N i-I
NiIqi(N i)  E qi(ni1) .(3.5)

In equation (3.4), i (n ) can be evaluated using certain

elements of the transition probability matrix P and the elements

of the steady state probability vector A. As per the notation

introduced earlier, the conditional probability that the (n+l)st

departure leaves behind ulu 2 ,...,u K number of the corresponding

class customers at the service facility, given that the nth de-

parture leaves behind JlJ2,...jK number of the corresponding

class customers, is represented as P[X+ 1 - ('u2,...,) I -

(JL1,J2,.'JK)]' If the row vectors u and I represent (Ul,U2,..u K )

and (Jlj 2,.'JK), respectively, then this conditional probability

can be written as P[X = u I X - J]. These are the elements of

P. In a similar way the steady state probability that a departure
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leaves behind jl,i2 ,.. .,J numbers of the corresponding classes

can be written as A(). Then 11 (n1 ) is given by, for i - 2,3,

. ,K,

N1  N2  Ni_1  Ni+ 1
i(n i  ..

ulO0 u2 O O Ui+l=

NK Ni Ni+l NK
S[ Z ... E P[X _=uX -i]A(1)1 (3.6)

U K 7 O J i -l J i + l - 0  J K 0 - -n i -- -

+ {P[Xn_+--X 'O]A())}],

where J= 0 if Z < i and u i, for ni  0,1,2,...,N i-1,

and for 1 1,

N2  N3  NK  N, N2  NK
11(nI) M E E ... E [{ Z ... Z

u 2 =0 u 3 no UK-O Jl=I j2f0 JK=0

P[X +.AXn,,n]A(i)} + {P[X+,nuX n,0]A(O)}] (3.7)

where u1 = nI for nI  0,1,2,...,(N 1-1).

In (3.6) and (3.7), 0 represents the row vector containing all

zero elements, i.e., (0,0,...,0).
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3.2.1.1 Implementation of the Algorithm

The calculation of 1 1(ni) as per equations (3.5) and (3.6)

is the main task in the calculation of the marginal time average

1probabilities, q (ni). Certain elements of the transition prob-

ability matrix P and the elements of the steady state probability

vector are necessary for calculating Ri (ni). It may be recalled

from section 2.6 that only those elements of P necessary for the

calculation of the steady state probabilities are stored and that

the steady state probabilities are calculated after the generation

1of the elements of P and inversion of (I-P) matrix, as per the

previous set of algorithms developed. Hence, in order to imple-

ment the algorithm to calculate q (n.) , it is necessary to store
i

those elements of P necessary to calculate R (ni).

In equations (3.6) and (3.7), the vectors u and * refer to

the corresponding column and row states, respectively. Upon

scrutiny of equation (3.6), it can be seen that the required

elements of P, which are the conditional probabilities P[X =u

X n=_] correspond to the row states which has zero number of class

1 customers. Because of the way in which the row states are

arranged as per the steps described in Section 2.4.2, these row
K

states correspond to the last H (N +1) rows of the transition
£=

probability matrix P. Therefore, it is necessary only to store
K

the elements of P corresponding to these last R (N£+1) rows

as they are generated in the earlier set of algorithms. Equa-

1 130



tion (3.7) requires the elements of P which correspond to the

row states having the number of class 1 customers greater than

zero. As the storage of these elements requires additional

space, equation (3.7) is to be modified and reduced in terms of
K

only the elements of the last H (NZ+1) rows of P. To achieve
k=2

this, first the equilibrium equation (2.17) is written as

N N N
1 2 K

A(u) = E ... Z P[X ,.=uX =j]A(4) (3.8)

Jl = 0 j 2 =0 JK=
0

K K K
where Z ui , E j i < Z Ni and 0 < u. < N for i = 1,2,...,K.

i=l i=l1 i=l

Equation (3.8) can be modified by rearranging the terms and

written as

N1  N2  NK

E Z ... EP[X =ujX =_']A(_') +

i{1l j =0 = I~n+l~~YA ' -+-

P[X =u[X =0]A(0)} {A(u) - (3.9)
--n+l -n - -

N2  N3  NK
E Z . E P[X _=ulX =J_]A(i)}

j2=0 j3=0 JK=0 n

K K K
where Z J1 < Z N K in vector t' and jl=O and E ji 0 in vector

i-l iml i=l4. Using (3.9), (3.7) can be rewritten as
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N 2 N 3 N K N2 N3 NK

u2 =0 3 =0 UK=O j2 -0 j3 -0O K

(3.10)

{P [Xn 1=u X n=i]A(I_) I

K
where u 1  n 1 for n,0,1,2,...,N 1 1and J =0 and E ji 00

1=1
in J.

Now TI (n.i) for i =1,2,.. .,K and n. 0,,,., 1- can

be found by using (3.10) and (3.6) in terms of the elements of
K

the last HI (N z+1) rows of P. For the sake of computational

convenience ,equation (3.10) can be rewritten after interchanging

summation signs as

1 N 2  N 3  NK 1
11 (n) =sl(n) z- ... E A (J_)Q (n U-) , (3.11)

j 2=0 j 3=0 K =0

where

K N z
S1(n 1  E [ E A(u)] (3.12)

and

K Nz

Q (nl;I_) E E P[ - .~ =I (3.13)
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in (3.11) to (3.13), uI - n1 for n1 - 0,1,2,...,(N 1 -1), and in
K

(3.11) and (3.13) Jl 0 and Z J > 0.
-2

In a similar way equation (3.6) can be rewritten as, for

i - 2,3,...,K,

Ni  Ni+ I  NK

H (ni)  Z E ... E 0 AQ) Q (n i;.)
Jii I Ji+l=0 JK=

(3.14)

+ {A(0)Qi(ni;_) I

where

K N2
Qini) [ P[X~lUjX ni] (3.15)

2.-l u =0

and

K N x
Qi (ni;0) , £ [ _ 0)] , (3.16)

L- U27u =0 Xn-0(.6

where 0 is the row vector containing all zero elements. In (3.14)

to (3.16), ui 
= ni = 0,1,2,...,Ni-i and in (3.14) and (3.15),

J > 1 and J,,- 0 for all 2 < i in iJ. The advantage in using

equations (3.11) to (3.16) for calculation of Hi (ni), i- 1,2,...,K,

is that the storage required is less as the required elements of

P are not stored individually but, rather, as sums in Q i(ni;J).
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Now the algorithm for calculating the values of q (ni) can

be described in the following steps:

Step 1: Modify Step 1 of Part A of Section 2.6.2 as

follows:

Calculate and store Qi(n i;) for i -1,2,...,K

using (3.13) and (3.15) , and Q i(n1 ;.) for i - 2,3,...,K

using (3.16).

Step 2: After calculation of the elements of A, calculate

Sl(n1 ) for nI = 0,1,2,...,N 1-1 using (3.12).

Step 3: Calculate the values of nli (ni) for i - 1,2,...,K and

n, = 0,1,2,...,Ni-i using (3.11) and (3.14).

Step 4: Calculate q i(ni ) for i - 1,2,...,K and ni - 0,1,2,

,i using (3.4) and (3.5).

3.2.2 Joint Time Average Probabilities

If n refers to the row vector containing the elements

(nl,n2,...,nK) then the joint time average probability of find-

ing nl,n2,...,nK number of customers of the corresponding classes

at the service facility can be represented by q(n). In this sec-

tion, expressions for obtaining the values of q(n) for i - 1,2,

...,K and ni  0,1,2,...,Ni are derived.

In this case the level corresponding to the state n - (n1 ,n2,
K K

... ,nK) E n1 0 Z NK, is considered and the state space is
iml i=l

divided into two mutually exclusive sets. Set 1 consists of all
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states n' (n, n',...,n ), such that 0 < n' < ni for i = 1,2,

...,K, and Set 2 consists of all other states. Then, because

there are only single arrivals, the rate of upcrossings, r (n),

from set 1 into set 2 is given by

K n1  n2  n i-l n i+l nK
r (n) =Z Xi(ni) Z E 7. Z ... E q(n'))

n'=0 n'0 n!-_=0 n! =0 '=0
1 2i1 i+l

(3.17)

where n' = n. in n',
1 1 -

and Xi(n.) (Ni-ni)Xi for i = 1,2,...,K. Also, because there

are only single departures, the rate of downcrossings, rd(n), from

set 2 into set 1 is given by

K
rd(n) = Z ni(ni) iP i  (3.18)

In (3,18), l (ni) is the steady state probability that a departing
F' 11

class i customer leaves behind n. customers of class i and less than

or equal to n customers of class Z, Z#i, at the service facility and

p iP gives the output rate of class i customers. Then using Level
i i

Crossing Analysis [SHAN 80] as r (n) = r (n),
d- u

K nl n2  ni-i ni+l n.
E A, (n) M E E ... E E ... Eq (n')

i=l i i n,-0 n'=0 n' =0 n'=0
1_ -0 ni+l10

(3.19)

Z T1(ni) oiP
i

i1l
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Rearranging the terms, equation (3.19) can be written as

K K
q(n) E A.n. = E Hi(ni)ii p ---~ I il I  i•i

K nl n2 ni-i n i+l nK
E A.(n.){ Z E ... Z Z ... E q(n')}.(3.20)
inl1 n'=0n:0 n!-=On!l0 ==

1~ 2 - 1+1

K K
Z n! E n

j=Z J j=l

K
In (3.20) the elements of the vector n are such that I n.
K j=l
I N.. q(N1 ,N2, ... NK) can be obtained from

j=l '

NI N2  NK

q(NIN 2 ..... NK ) = 1- {Z E ... E q(nln 2,...,nK)

nl=0 n2=0 nK=O

(3.21)

K K
Zn. ZNJ=1 j-1

Equation (3.20) gives a recursive relation for finding the

values of q(n) starting with n = (0,0,...,0), which is the (m+l)st
th

row state of (I-P) matrix, then considering the m row and so on,

until finally the Is t row state given by n = (Nl,N2 ,...,NKlNK-)

is considered. The values of J1 (ni) in (3.20) can be obtained
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in a similar way as described in Section 3.1.1. The algorithm

for finding the values of q(n) can be summarized in the following

steps:

Step 1: After finding and storing the values of 71(n

for i = 1,2,...,K and ni = 0,1,2,...,Ni-1, set

j = m+l.
th

Step 2: Set n equal to the j row state of (I-P). Cal-

culate q(n) using (3.20).

Step 3: Set j = j-l. If j > 1, go to Step 2. Otherwise

go to Step 4.

Step 4: Stop.

3.3 MIXED CLASS MODELS

In this section the possibility of using the algorithms for

mixed class models with infinite capacity sources for some classes

and finite capacity sources for the other classes is considered.

The number of the states of the transition probability matrix

becomes infinity if one or more of the sources are of infinite

capacity. This problem of infinite number of states can be e-

liminated by assuming maximum limits for the total number of

customers of infinite source classes at the service facility.

However, care should be taken in choosing these maximum limits

depending upon the model parameters so as to be realistic.

For the purpose of illustration, a mixed class model with

infinite capacity source for the highest priority class, i.e.,
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class 1, and finite capacity sources for the other classes is

considered. The number of classes is equal to K. The capacity

of the source of class i, i = 2,3,...,K is assumed to be Ni,

which is finite. The mean time interval spent by a class i cus-

tomer, i = 1,2,...,K, at source i is exponentially distributed

with mean 1/A i  Because of infinite source, the probabilit-, of

a certain number of arrivals of class I customers at the service

facility within a given time period is independent of the number

of class 1 customers already present at the facility. This is

not true with other classes for which this probability is de-

pendent on the number of the customers of the corresponding

classes already present at the facility. The service time of

class i customer, i = 1,2,...,K, has an arbitrary density func-

tion with mean i/i.. Class i customers are given preference over

class j customers for service if i < J. To restrict the number

of states of the transition probability matrix from being in-

finity, it is assumed that the maximum number of class 1 cus-

tomers present at the service facility at any time is M I. In

other words, there will be no arrivals of class 1 customers in-

to the service facility when there are M1 number of class 1

customers already at the facility.

This model can be analyzed using an imbedded Markov chain.

The total number of the states of the transition probability
K

matrix is given by (MI+1){ Z (Nk+1)}-l. For example, if there
Z=2
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are 3 classes with M = 20, N2 = 10, and N3 = 10, the total num-

ber of states is equal to 2540. The algorithms for ordering the

row and column states, inverting the corresponding (I-P) 1 matrix

and calculating the steady state departure probabilities are

the same with M1 replacing N1. There are, however, some changes

in the other algorithms. These are discussed in the following

subsections.

3.3.1 Calculation of the Elements of P

The probability that the number of arrivals of class i cus-

tomers, i = 2,3,...,K, at the facility within a time period t is

mis when there are ni customers of class i at the facility, is

given by

nN.-n 1 -Xit mi -Xt N i-n i-mi

where mi, i = 0,1,2,...,N i and mi + ni < Ni  This is the same

as expression (2.20). But for class 1 customers,

P(ml;nl't) = p(ml;t)

because this probability is independent of the number of customers

of class 1 at the facility. This probability is given by
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-Xit m

e (AL)
P(m ;t) (3.22)

Let the vector _ which gives the state of the process at
th

the n departure epoch be such that it has at least one non-

zero element, j£, (i = 1,2,...,K), with j 0 for all i < Z,

if 0# 1. In other words, at the nth departure epoch, there is

at least one customer of class k present at the facility without

any customers of higher priority classes waiting for service.

Stt

Then the (n+l) t service time is that of a class 2. customer.

(i) If k = 1, then the (n+l)s service time is that

of a class I customer. If the vector u gives the

state of the process at the (n+l)st departure

epoch, then as per the discussion in section 2.3,

K
P [X n+=ulX n- = f p(u 1 -j 1 +I;sl){ fl P(Ui-ji;Ji's1)}dF(s1 ) 1

i=2

(3.23)

where F(s1) is the distribution function of class 1 customer's

service time. Substituting the values of p(u1-jl+l;sl) and

P(ui-ji;Ji,Si) and simplifying, equation (3.23) can be written

as

P[Xn 1 =UlX=] 8 of 0edF(s1 ) (3.24)

where
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Si _i u1 J1 +l)t (3.25)

and

K -A is Iu -j. -x s IN -u -)x as u 1-j++1
, K(i-e- il)U (e le) i el(Xlsl) - . (3.26)

(ii) If £ > 2 and Ji = 0 for all i < k, then the conditional

probability is given by

K

P[X- 4 =u-X -J = - fp(u1-jl;s,){ TP(ui-ji;Jils 2 )}

(3.27)

P(ue-Jiz+l;Jzpsk)dF(s )

where F(s ) is the distribution function of class k customer's

service time. Equation (3.27) can be rewritten as, for

2. = 23..K

- - _:uI k, .= ' 2,oy OdF(s £)

where

I K /Ni-i, N-£K (Ni(u-) ( u n + (3.28)

1-) i2 ui-Ji u-Jh+1
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and

s IilK 1 8 12 u i-ji -P2 N Cu i6' = e-XS (XlSI ) UlJ{ K (l-e- s)iJ(e- £ N - l

i=2

(3.29)

(1-e X ) (e X I.

If the nth departure leaves behind an empty facility, i.e.,

if in vector £, i - 0 for i = 1,2,. .. ,K, then as per the equa-

tion (2.26) in section (2.3), the conditional probability is

given by

K
P[X +=uIX =0] = Z {Probfidle period is terminated by a class i

i=l

customer]Prob[Xn+ 1=uIX=J] ),

where0 = (0,0,...,0) and in J, j, = 1 if Z = i andj = 0 if

L 0 i. In this model the probability that an idle period is

started by a class i customer is given by

K l

N X + Z iAil when k > 2
il=2

and

K
+ E±1 i+ A i when 2 = 1.

il=2N
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Therefore the conditional probability is given by

P[n+1 = ujXn =0] =Qi + Q2 (3.30)

where

Qi X A1 [XI + K N i1AX 1] -l X-~=:
il= 2

(3.31)

where j l = 1 and j. 0 if k > 1 in

and

K K -
Q2= Z N.X[X + Z N A I {11[X = x=~

i=2 i i 1 il=2 i l-

(3.32)

where j.= 1 if k = i and j,= 0 if Z. i in ~J.

3.3.2 Calculation of E(B 3 's and pt's

The expected length of the idle period in this model is given

by

K
E(I) = [XA + E N -lX (3.33)

i=2 ii

Therefore the values of E(B.)'s are given by, if j =1,
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K -

1=2

N 1 K N9.
A (0) E E 1{ A (v)D

v =1 k=2 v =0

and, if j=2.3,...,K

K -1
E(B) =/ 1/I[N A (X 3 + E N 1X i) +

i=2

(3.35)

Nj K N

A(O) E ( E { E A(y)})],
v =1 k=j+l vp=

where v1  0 for all Rl <j inv.

The values of PSI 1,2,.. .,K, can be obtained from (2.9)

with E(I) given by (3.33).

3.3.3 Calculation of Mean System Performance Measures

The value of p can be obtained from (2.7). The equations

(2.3) and (2.4) giving the values of W qand L are valid only

fo'r i - 2,3,...,K. For i 2,3,...,K, W and L i are calculated

first using (2.3) and (2.4) and then W and L qare calculated

using the expressions (2.5) and (2.6).

Class 1 behaves like a submodel with limited waiting space

of capacity M V The steady state probability that a departing

class 1 customer leaves behind n 1 customers of class 1 at the
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facility, nl (n1 ) can be calculated for n1 = 0,1,2,... ,M1-l using

the equations and the algorithm developed in section 3.1.1.

Applying Level Crossing Analysis [SHAN 80], the time average

marginal probability that there are n1 customers of class 1 at

the facility, q (n1 ), can be obtained from the following rela-

tions for nI = 0,1,2,...,MI:

1

P 1 II(nl)
q (nl) f I , for n1 = 0,1,2,...,M -I and (3.36)

M -11M 1
q I(M) 1- E q (n I ) (3.37)

n =0

Then the mean number of customers of class 1 waiting at the

facility, LI, is given by

M1

L = E n q (n 1 (3.38)
nl =0

The mean waiting time of a class 1 customer at the facility, W1 , is

related to L1 by , [GROS 74],

W1 W L1 /XI[1 - ql(M1 )] (3.39)

Once L1 and W1 are calculated, L and W can be obtained from

Lql L1 - P (3.40)
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and

Wq W I - , 1/- i (3.41)

respectively.

Thus it is possible to use the algorithms developed in

Chapter 2, with minor modifications, for a mixed class model

with infinite source capacity for class 1. One main difficulty,

however, is the large number of states. This increases the

storage requirement and the computational time.

3.4 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The main contribution of this research is the development of

a solution procedure which contains a set of numerical algorithms j

for finding the mean values of system performance measures for a

multiple finite source queueing model with fixed priority service

discipline. The system performance measures considered are the

utilization of the server, the mean waiting time of the customers,

the mean number of customers waiting, and the mean number of cus-

tomers at the source of different classes. The set of algorithms

was also extended to obtain marginal and joint time average prob-

abilities of finding a certain number of customers at the facility.

The possibility of using the algorithms to a mixed class model

was also discussed. The algorithms were verified using simulation.
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Imbedded Markov chain analysis was used as the basis of

solution development of the algorithms. The system was imbedded

at departure epochs so as to obtain a discrete state Markov

chain. The structure of the transition probability matrix of

this Markov chain was then modified by suitable arrangement of

its row and column states so that numerical techniques could be

used to invert the final matrix and to obtain recursive solu-

tions for the steady state departure probabilities. The mean

values of the system performance measures were related to these

steady state departure probabilities using the regenerative

method and Little's formula. The time average marginal and

joint probabilities were related to the steady state departure

probabilities using Level Crossing Analysis.

The set of algorithms developed in this research provides

an alternative to simulation for studying and analyzing this

model. Using these algorithms, exact values of mean system per-

formance measures and time average probabilities can be obtained

which give a clear insight into the behavior of the model. How-

ever, there are a number of areas related to this research and

the model that need to be investigated. These are discussed in

the remaining part of this section.

As mentioned in section 2.7.2, some computational difficul-

ties were experienced while generating the elements of the

transition probabili-y matrix using the algorithms when the

state space becomes large. Numerical methods can be used to
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evaluate the integrals used in the calculation of the elements

of the matrix. Work in this direction is necessary to study

the effect of numerical methods on the accuracy of the results

and the computation time required as compared with the combina-

torial methods used in this research.

As pointed out in Chapter 2, it was decided not to use

global balance equations of the system to find the mean values

because of the very large state space required as compared with

the state space related to imbedded Markov chain analysis and

its limitation to service time distributions with rational

Laplace Transforms. Exploration of global balance equations

is necessary to find out whether any special structure of the

matrix related to the equations exists which may lead to an

efficient solution method for these types of service time dis-

tributions.

The use of the solution procedure developed in Chapter 2,

for mixed class models was discussed in section 3.3. Further

investigation is recommended to determine if new algorithms

can be developed for mixed class models which are more efficient

than those contained in the solution procedure developed in th!.R

research.

The behavior of the model investigated in this research

should be studied to find the effect of different parameters

such as the number of classes, number of customers of each class,
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service and arrival rates, and service time distributions on

the system performance measures. Investigation in this direc-

tion may help in the design of systems which can be described

by this model.

Only the mean values of the waiting times of the customers

of different classes are obtained in this research. In some

cases, the mean values alone are not sufficient to give a true

picture of the model behavior. An important measure is the

variance. Further work is recommended to obtain the variances

of waiting times of different classes of customers.

There are many useful results available for multiple class

infinite population models, but not applicable when the popula-

tions are finite. One such case is the rule which assigns

priorities to the different classes so as to minimize the total

delay cost based on mean values [CONW 67, JAIS 68, and KLEI 76].

But in the case of finite population models, no such rule is

available because of the nonexistence of closed form solutions

for the mean values of different performance measures. Future

work in this area is necessary. Dynamic priority service rules

have been applied to multiple infinite source models and useful

results have been obtained [KLEI 76 and WOOD 78]. In the case

of multiple finite source models, analytical or numerical methods

should be developed for finding the values of system performance

measures with dynamic priority service rules.
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Approximate methods for solving complicated queueing models

are gaining increased recognition when such methods can lead to

operational solutions which result in valid decisions. The

main advantage in using approximate methods is that less compu-

tational time is required compared to exact analytical and num-

erical methods or simulation. There are many ways in which the

performance measures in this model can be obtained approximately.

Investigation in this area is likely to yield useful results.
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APPENDIX A

LIST OF SYMBOLS

General:

(i) The value of a summation is considered zero if the

upper limit is less than the lower limit. For example,
12
E (.) = 0 if 12 < il.
i=il

(ii) The value of a product is considered one if the upper

limit is less than the lower limit. For example,
12
H (-) - 1 if Z2 < U.

(iii) Matrices are denoted by boldface letters (B, C, P, etc.).

(iv) Column or row vectors are represented by boldface or

lower case letters, with a line underneath (A, c, ,

etc.).

(v) The elements of a matrix are represented by lower case

letters with the row and column numbers as subscripts.

For example, the element of matrix C, in row i and

column J, is represented by cii.*

(vi) The i th element of a column or row vector is represented

by adding i as the subscript to the letter which represents

the vector without the line underneath. For example, Z.1

is the ith element of the vector Z.

(vii) The inverse of a matrix B is written as B- 1 .
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Specific:

I/Ai: Mean inter-arrival time of a class i customer.

Mean service rate of a class i customer. (_
reciprocal of the mean service time of a class i
customer.)

Ti (n): Steady state probability that a departing customer
of class i leaves behind ni customers of class i

at the facility.

Pi: Proportion of time the server is busy with class
i customers.

P: Utilization of the server.

A: Steady state departure probability vector of the
imbedded Markov chain.

A : Row vector containing the first m elements of A.
th

A.: j element of A.j _

A(v): Steady state probability that just after a depar-
ture the state of the process is v = (vl,v2 ,'...,vK)

C: Left triangular matrix of size mxm containing the
elements located along and below the main diagonal

of (I-P)1 matrix.

CP:i: Matrix which contains all elements of C and all the

unity elements above the main diagonal of (I-P)1

from left up to and including the one being considered

in the ith iteration of phase p.

E(B): Expected length of the busy period.

E(B) Expected length of the busy period during which
the server is busy with class i customers.

E(1): Expected length of the idle period.

Vsi): Probability density function of the service time of
a class i customer.

F(si): Distribution function of the service time of a class
i customer.

Inverse of C.
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Gp:i "  Inverse of Cp :i

I: Identity matrix.

(I-P) : Matrix of size mxm containing all elements of (I-P)
except the last row and the first column.

K: Number of classes (sources).

c(k,n): Column number in (I-P) of the nth column of the
ordered column set k.

tc(k,F): Column number in (I-P) of the last column of the
ordered column set k.

in: kc(k,n)

9F: Zc(k,F)

Xr(i,j): Row number in (I-P) of the jth row of the ordered
row set i.

L Mean number of waiting customers of class i at the
facility.

L : Mean number of waiting customers of class i in the
queue.

m+l: Total number of states of P.

Ni: Total number of customers of class i.

p(mi;nit): Probability that the number of arrivals of class i
customers at the facility within a time interval t
is mi when there are ni customers of class i at the

facility at the beginning of the time interval.

P: Transition probability matrix of the imbedded Markov
chain.

iq (ni): Time average marginal probability that there are n

customers of class i at the facility.

q(n): Time average joint probability that there are
n - (nl,n2 .... ,nK) number of customers of the

corresponding classes at the facility.

r(kl): Total number of row states in the ordered row set
kl of (I-P).
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r'(kl): Total number of row states in the ordered row set

kl of (I-P)

R(tc(k~n)): Location of the unity element above the main diagonal

of (I-P) in column £c(k,n).

R(kn): R(Zc(k,n)).

Si: Service time of a class i customer.

U: Total number of unity elements above the main diagonal
1

of (I-P)

W i Mean waiting time of a class i customer at the facility.

W : Mean waiting time of a class i customer in the queue.

th
X : State of the process at the n departure epoch.

Xi: ith row state from top.

State of the process at the (n+l)s t departure epoch.vx  th

-- +i" v column state from left.

Z: Row vector containing the negative of the last m ele-
ments of the last row of the matrix (I-P).
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APPENDIX B

EVALUATION OF THE INTEGRAL IN THE ELEMENTS OF P

The integral is given by

of/O£dF(s£) f f(s )ds,

where

K -A is~ U -A s~ N -ua~ u9 -it+, -A s9 N Cu C.l
0£ ={1 (l-e )u (e )Ni (1-e ) (e- )

B.1 EXPONENTIAL SERVICE TIME DISTRIBUTION

)I

f(s ) e e , > 0

- 0 , otherwise

K -A s .u -ji~ -xiA9 N -A 19.s tu -19
of 0 f(s )ds I (l-e ) (e 1 -e

i=l

(e e) 9 e ds

Using the substitutions y - e and a - , i - 1,2,

...,K, the final form of the integral is given by
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f Of(sk)ds£ = ht= h (-1) h h -iih lo0hz=0 ! hl=O I lJ '

(B.1)

S z - 3 K ,K - K ' . l

h. 0 U g h e K 
1}

K

for 0 < < N; u. 0; if i =,2..K and 0 < u t1

u9 , it + 1 > 0.

In (B.1), b9 is given by

b91 =[{A 9 (N u C l+h) + z A i (N -ui+hi) } + 1] -
. (B.2)

i=1

B.2 HYPO-EXPONENTIAL SERVICE TIME DISTRIBUTION

k2  (k9k-1) -k£y9sk(ki'£) s£ e
f(s ) =(-)!, s > 0

0 , otherwise.

Using the substitutions y e and ai -- k£-- ' i 1,2,...,K,

and the integral relation

ofIx m[log(1/x)jndx = n! if (m+l) and n > 0,
(m+l)n+l
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the final form of the integral is given by

u Cj 0+1 u 1i i(,h u 1-j1  h

of0 2zf(sz)ds .  E (- h ) (-1) h

h O= h2 h-O hl 

(B.3)

UK-JK ( UK- K hK 2

E 0 hi (-I) b I

for 0 < ui S Ni; u, - j, > 0 if i f 1,2,...,K, and 0 < u Nc-;

u- jt+l > 0.
2

In (B.3), b 2 is given by

2 1 K -kb2 [ I-- X {(N-u- 1+h) + E X (Ni-ui+hi)} + 1] (B.4)

z 2kk2 t9. i-1i .

If k t is taken as 1, which makes f(s£) an exponential density
2 1

function, b 2 becomes equal to b .

B.3 HYPER-EXPONENTIAL SERVICE TIME DISTRIBUTION

f(s 1) Pt.1 Vi l e + PL2 P12 e , s > 0

= 0 , otherwise 
j

where P21 + P£2 - 1.
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This is a two-stage hyper-exponential density function. It

is possible to have more than two stages which is a simple exten-

sion of the two stage function.

Writing the integral as a sum of two integrals and using the
-1i s A -. 2s A

substitutions, y- e ; al - ; Y e and ai2
ki 1 2

the integral becomes

Uz-P+1 u _ +1h 1  -j I u

o/E)zf(s )ds, = { h X (_l) h(l _1 )
h £ =0 h 1h.0

(B.5)

hz hK (-l) b L

for 0 < ui < N,; u. - J, > 0 if i = 1,2,...,K, and 0 < u. :S NZ-1;

u- j +l > 0.
3

In (B.5), b3 is given by

3 K
b= P1[kl {t(N -u k-+hX) + E X i(Ni-ui+h)} + 1]

£1i imi

(B.6)

1 K -
+ P2[- {X (N -uI-l+h ) + £ Xi(Nt-ui+hi)) + ]-

It PZ1 is taken as 1 and pa then f(s ) becomes an exponen-
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tial density function with mean 1pas in B.l. In that case,

3 1
bbecomes equal to b.
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APPENDTIX C

EXPRESSIONS OF THE ELEMENTS OF THE INVERSE Gk+l:.F

Exprssios o from (2.87) are substituted into (2.98).

(i) For 1 i~ < <c2,)

For J 1,2,...,m

k+1:F = -k+l 2c(k+3-kl,F)

k1-2 tumZ(k+3-kl,1

Rc(k+2,F)

k+1 tc(k+3-kl,F)
E z gg~ 4h(k+1,k+3-kl,k,k'))]

k1'2 k-kc(k+3-kl,1) '

2.c(k+2,F)

-Z-c(k+2 J)

k+1 2c(k+3-kcl,F)
E ( r g~ t( h(k+1,k+3-kl,tgi)

k1-2 Zu-Lc(k+3-k1,l)

itc (k+2 ,F)
E dl(k+2,L2,i)h(k+l,k+3-kl,i,t'11 (C.1)
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Consider

Zk(k+2,F)

Al - h(k+1,k+3,1,i) E dl(k+2,t',i)h(k+,k+3-kl,1,1').

Substituting relations (2.99)

k+l kc(k',F)
Al -D(k+3-kl,2.,i) - r ( D(k',IP,i)T(k+3-kl,k',k,kI))

k'=k+3-kl+1 tc 'l

f£c(k+2 ,F)
E dl(k+2,Vj,)[D(k+3-kl,LV)

£ '-Zc(k+2,1)

k+l tc(k',F)

k '=k+3-kl+l £k-Zc (k', 1)

Consider

k+1 £c(k',P)
A2 -D(k+3-kl,k,t') - E E D(k'L,,') r(k+3-kl,k',9,ki)1.

k''mkeI3-kl+l t£-te(k' .1)

As V' > Zc(k+1,F), because of (2.89),

D(k+3-kl,9t,%') =dl(k+3-kl,t,t')

for ki 2,,.,-

and
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=dl(k',zz,i) for k' -k4-3-kl-9-,...,k+l.

Therefore,

k+1 2c(k',F)
A2 dl(k+3-kl,1,X') - E Z dl(k',U.,Z') T(k+3-k1,Z,kk)1.

k'=k+3-kl+1 zk=Lc(k' ,l)

It can be seen that the expression for A2 is identical to the ex-

pression. for T(k+3-kl,k5,t,k') given by (2.90) for k5 =k+2. Hence

A2 = T(k+3-kl,k+2,2.,k').

Now Al becomes

k+l tc(k',F)
Al= D(k+3-kl,t,i) - E E D(k',tZ,i)T(k+3-kl,k',X,9)}

ic(k+2,F)
E dl(k+2,Z',i)T(k+3-kl,k+2.,X') *

Now i < 1c(k+2,F) and so

dl(k+2,1',i) -D(k4-2,1',i)

because of (2.89).
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Therefore,

k+2 fc(k',F)
Al D(k+3-kl,2.,i) - E E D(k',Iji)T(k+3-kl,k',.,U2.

k-k+3-kl+l Xk-Xc(k' ,l)

Al is identical to the expression f or h(k7,k+3-kl,k,i) given by

(2.88) if k7 is taken as (k+2).

Therefore,

Al =h(k+2,k+3-kl,k,i).

Now equation (C.1) can be rewritten as

k~l F 2c(k+2,F)
Sjj = Sjj -R=c(k+2,1)kj

k+1 9c(k+3-kl,F)
F I E g , .h(k+2.k+3-kl.Q..i)1.

Since i < kc(k+2,F),

dl(k+2,1',i) - D(k+2,k2,i)

as per (2.89).

D(k+2,i',i) is identical to the relation for h(k7,k+2,k',i)

k+l:F
as per (2.88) when k7 =k+2. Therefore, g can be written as
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k+J:F k+2 9tc(k+4-kl,F)
i - kl-2 Ytc(k+4-klli)~

(ii) For Zc(2,l) < i < kc(k+l,F):

For j 12..m

k+1:F -- k+2 tc(k+3-kl,F) hk+,+ 1,i)
giE { E g hklk3k~~)
i~jk1=2 t=9Zc(k+3-kl'l) '

2c(k+2,F)

2.'=2Zc(k+2,l) i

k+l tc(k+3-kl,F)

k1-2 L=2.c(k+3-kl,l) '

This is the same expression obtained in (i) for 1 < i < kc(2,1)

without the term g ij* Therefore, following the simplifications

in (i), the final expression for g ~: can be written as

k-9-1F -k+2 kc(k+4-kl,F)

"Jk12 L=tc(k+4-'kl,1) sthk2"14klti}
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